type | UTILITY |
---|---|
zing | 4.1 |
playmo | 7.3 |
lego | 4.6 |
zing | 2.2 |
playmo | 7.9 |
lego | 5.1 |
zing | 3.9 |
playmo | 6.6 |
lego | 5.7 |
zing | 1.2 |
Univariate Statistics and Methodology using R
Psychology, PPLS
University of Edinburgh
founded on two principles
the sun will rise every day
just one counterexample…
founded on two principles
you can’t prove a hypothesis to be true
the universe is governed by chance
founded on two principles
you can’t prove a hypothesis to be true
the universe is governed by chance
enough is operationalised as a probability
summaries assume that chance is ruling things
summary statistics are often
(these are basically the same thing, compared to \(z\) or \(t\) as appropriate)
if the probability of obtaining the data we have observed (or more extreme data) under the null hypothesis is low enough…
if
we have made the right assumptions about chance
we have calculated the right summary
we have looked up the appropriate probability (of obtaining summary statistic or more)
that probability is below the \(\alpha\) level we have previously set
then
\[\color{red}{\textrm{outcome}_i} = \color{blue}{(\textrm{model})_i} + \textrm{error}_i\]
essentially, these are based on covariance
the model expresses the amount that variables covary
the error is the unexplained variance, and we have a theory about its distribution
we want the model (SS) to be big compared to the error (SS)
again, we’re calculating summary statistics and looking up the probability of obtaining them (or more) in a chance universe
coefficients tell you about (hypothetical) lines through data
the most important (and often least exciting) coefficient is the intercept
other properties of the line are always relative to this
we can change the interpretation of the intercept by scaling predictors
we assign numbers to the category values (one pair of values for each of \(n-1\) comparisons)
use generalized linear models
specify link function
most frequent case is binomial
→ logit (log-odds) link function
→ p/(1-p)
← o/(o+1)
→ log(o)
← exp(l)
Matthews (2000). https://doi.org/10.1111/1467-9639.00013
the direction is something we reason about
the model doesn’t care:
lm (y ~ x)
and lm (x ~ y)
are “the same” (cor.test(y,x)
)
Correlation doesn’t imply causation, but it does waggle its eyebrows suggestively and gesture furtively while mouthing ‘look over there’.
Randall Munroe https://xkcd.com/552
If you should say to a mathematical statistician that you have discovered that linear multiple regression and the analysis of variance (and covariance) are identical systems, he would mutter something like “Of course—general linear model,” and you might have trouble maintaining his attention. If you should say this to a typical psychologist, you would be met with incredulity, or worse. Yet it is true, and in its truth lie possibilities for more relevant and therefore more powerful research data.
Cohen, 1968
introduced c. 1900 in biological and behavioural sciences
aligned to “natural variation” in observations
shows that means \(\bar{y}\) are related to groups \(g_1,g_2,\ldots,g_n\)
introduced c. 1920 in agricultural research
aligned to experimentation and manipulation
shows that groups \(g_1,g_2,\ldots,g_n\) have different means \(\bar{y}\)
GLM has less restrictive assumptions
GLM is far better at dealing with covariates
GLM is the gateway to other powerful tools
mixed models and factor analysis (→ MSMR)
structural equation models
type | UTILITY |
---|---|
zing | 4.1 |
playmo | 7.3 |
lego | 4.6 |
zing | 2.2 |
playmo | 7.9 |
lego | 5.1 |
zing | 3.9 |
playmo | 6.6 |
lego | 5.7 |
zing | 1.2 |
Analysis of Variance Table
Response: UTILITY
Df Sum Sq Mean Sq F value Pr(>F)
type 2 83.3 41.7 25.1 0.000052 ***
Residuals 12 19.9 1.7
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.280 0.577 3.95 0.0019 **
typeplaymo 5.760 0.815 7.06 0.000013 ***
typelego 2.540 0.815 3.11 0.0089 **
...
so far, every model we’ve looked at has been “one observation per participant”
however, most experiments have a structure
some observations are “more related” to each other than others
for example, because they come from the same person (repeated measures)
\[y_{ij}=b_{0j}+b_{1j}x_{1ij}+\epsilon_{ij}\]
\[b_{0j}=\gamma_{00}+\zeta_{0j}\] \[b_{1j}=\gamma_{01}+\zeta_{1j}\]
relatedness accounted for by more regression equations
all part of the linear model → next semester
no ‘perfect way’ to speak it
{tidyverse}
and {data.table}
constantly changing
new libraries ({magrittr}
introduced %>%
)
new syntax (R v4.1.0 introduced |>
)
we are all constantly learning new things
id quality SPLATTED bin
1 A0001 84 0 (80.2,90.1]
2 A0002 34 1 (30.7,40.6]
3 A0003 92 0 (90.1,100]
4 A0004 49 1 (40.6,50.5]
5 A0005 93 0 (90.1,100]
6 A0006 5 1 [1,10.9]
7 A0007 55 1 (50.5,60.4]
8 A0008 64 1 (60.4,70.3]
9 A0009 45 0 (40.6,50.5]
10 A0010 90 0 (80.2,90.1]
11 A0011 51 1 (50.5,60.4]
12 A0012 1 1 [1,10.9]
13 A0013 43 0 (40.6,50.5]
14 A0014 89 0 (80.2,90.1]
15 A0015 72 0 (70.3,80.2]
16 A0016 46 1 (40.6,50.5]
17 A0017 20 1 (10.9,20.8]
18 A0018 68 0 (60.4,70.3]
19 A0019 10 1 [1,10.9]
20 A0020 75 1 (70.3,80.2]
21 A0021 18 1 (10.9,20.8]
22 A0022 44 0 (40.6,50.5]
23 A0023 43 0 (40.6,50.5]
24 A0024 61 0 (60.4,70.3]
25 A0025 57 1 (50.5,60.4]
26 A0026 73 0 (70.3,80.2]
27 A0027 95 0 (90.1,100]
28 A0028 78 0 (70.3,80.2]
29 A0029 53 0 (50.5,60.4]
30 A0030 22 1 (20.8,30.7]
31 A0031 75 0 (70.3,80.2]
32 A0032 49 1 (40.6,50.5]
33 A0033 21 1 (20.8,30.7]
34 A0034 85 0 (80.2,90.1]
35 A0035 60 0 (50.5,60.4]
36 A0036 91 0 (90.1,100]
37 A0037 89 0 (80.2,90.1]
38 A0038 71 0 (70.3,80.2]
39 A0039 93 0 (90.1,100]
40 A0040 52 1 (50.5,60.4]
41 A0041 5 1 [1,10.9]
42 A0042 32 1 (30.7,40.6]
43 A0043 84 0 (80.2,90.1]
44 A0044 55 0 (50.5,60.4]
45 A0045 26 1 (20.8,30.7]
46 A0046 99 0 (90.1,100]
47 A0047 78 0 (70.3,80.2]
48 A0048 68 0 (60.4,70.3]
49 A0049 64 0 (60.4,70.3]
50 A0050 57 1 (50.5,60.4]
51 A0051 63 0 (60.4,70.3]
52 A0052 60 0 (50.5,60.4]
53 A0053 37 0 (30.7,40.6]
54 A0054 82 0 (80.2,90.1]
55 A0055 66 0 (60.4,70.3]
56 A0056 40 1 (30.7,40.6]
57 A0057 7 1 [1,10.9]
58 A0058 10 1 [1,10.9]
59 A0059 45 0 (40.6,50.5]
60 A0060 84 0 (80.2,90.1]
61 A0061 74 0 (70.3,80.2]
62 A0062 23 1 (20.8,30.7]
63 A0063 100 0 (90.1,100]
64 A0064 40 1 (30.7,40.6]
65 A0065 10 1 [1,10.9]
66 A0066 77 0 (70.3,80.2]
67 A0067 28 1 (20.8,30.7]
68 A0068 3 1 [1,10.9]
69 A0069 84 0 (80.2,90.1]
70 A0070 37 1 (30.7,40.6]
71 A0071 31 1 (30.7,40.6]
72 A0072 4 1 [1,10.9]
73 A0073 37 1 (30.7,40.6]
74 A0074 31 1 (30.7,40.6]
75 A0075 13 1 (10.9,20.8]
76 A0076 71 0 (70.3,80.2]
77 A0077 85 0 (80.2,90.1]
78 A0078 94 0 (90.1,100]
79 A0079 48 0 (40.6,50.5]
80 A0080 94 0 (90.1,100]
81 A0081 10 1 [1,10.9]
82 A0082 1 1 [1,10.9]
83 A0083 93 0 (90.1,100]
84 A0084 66 0 (60.4,70.3]
85 A0085 93 0 (90.1,100]
86 A0086 24 1 (20.8,30.7]
87 A0087 9 1 [1,10.9]
88 A0088 79 0 (70.3,80.2]
89 A0089 13 1 (10.9,20.8]
90 A0090 97 0 (90.1,100]
91 A0091 85 0 (80.2,90.1]
92 A0092 35 1 (30.7,40.6]
93 A0093 28 1 (20.8,30.7]
94 A0094 79 0 (70.3,80.2]
95 A0095 51 0 (50.5,60.4]
96 A0096 85 0 (80.2,90.1]
97 A0097 97 0 (90.1,100]
98 A0098 45 0 (40.6,50.5]
99 A0099 49 1 (40.6,50.5]
100 A0100 34 1 (30.7,40.6]
101 A0101 19 1 (10.9,20.8]
102 A0102 22 1 (20.8,30.7]
103 A0103 3 1 [1,10.9]
104 A0104 11 1 (10.9,20.8]
105 A0105 42 0 (40.6,50.5]
106 A0106 58 0 (50.5,60.4]
107 A0107 63 0 (60.4,70.3]
108 A0108 37 1 (30.7,40.6]
109 A0109 68 0 (60.4,70.3]
110 A0110 70 0 (60.4,70.3]
111 A0111 85 0 (80.2,90.1]
112 A0112 3 1 [1,10.9]
113 A0113 47 1 (40.6,50.5]
114 A0114 20 1 (10.9,20.8]
115 A0115 85 0 (80.2,90.1]
116 A0116 98 0 (90.1,100]
117 A0117 42 1 (40.6,50.5]
118 A0118 60 0 (50.5,60.4]
119 A0119 70 0 (60.4,70.3]
120 A0120 26 1 (20.8,30.7]
121 A0121 94 0 (90.1,100]
122 A0122 30 1 (20.8,30.7]
123 A0123 5 1 [1,10.9]
124 A0124 93 1 (90.1,100]
125 A0125 9 1 [1,10.9]
126 A0126 64 0 (60.4,70.3]
127 A0127 74 0 (70.3,80.2]
128 A0128 75 0 (70.3,80.2]
129 A0129 81 0 (80.2,90.1]
130 A0130 70 0 (60.4,70.3]
131 A0131 35 1 (30.7,40.6]
132 A0132 12 1 (10.9,20.8]
133 A0133 85 0 (80.2,90.1]
134 A0134 66 0 (60.4,70.3]
135 A0135 62 0 (60.4,70.3]
136 A0136 98 0 (90.1,100]
137 A0137 61 0 (60.4,70.3]
138 A0138 27 1 (20.8,30.7]
139 A0139 4 1 [1,10.9]
140 A0140 30 1 (20.8,30.7]
141 A0141 49 0 (40.6,50.5]
142 A0142 89 0 (80.2,90.1]
143 A0143 97 0 (90.1,100]
144 A0144 82 0 (80.2,90.1]
145 A0145 12 1 (10.9,20.8]
146 A0146 96 0 (90.1,100]
147 A0147 97 0 (90.1,100]
148 A0148 27 1 (20.8,30.7]
149 A0149 86 0 (80.2,90.1]
150 A0150 14 1 (10.9,20.8]
151 A0151 76 0 (70.3,80.2]
152 A0152 80 0 (70.3,80.2]
153 A0153 12 1 (10.9,20.8]
154 A0154 97 0 (90.1,100]
155 A0155 53 1 (50.5,60.4]
156 A0156 55 0 (50.5,60.4]
157 A0157 76 0 (70.3,80.2]
158 A0158 85 0 (80.2,90.1]
159 A0159 16 1 (10.9,20.8]
160 A0160 100 0 (90.1,100]
161 A0161 20 1 (10.9,20.8]
162 A0162 64 1 (60.4,70.3]
163 A0163 14 1 (10.9,20.8]
164 A0164 44 1 (40.6,50.5]
165 A0165 93 0 (90.1,100]
166 A0166 35 1 (30.7,40.6]
167 A0167 44 0 (40.6,50.5]
168 A0168 46 1 (40.6,50.5]
169 A0169 67 0 (60.4,70.3]
170 A0170 81 0 (80.2,90.1]
171 A0171 88 0 (80.2,90.1]
172 A0172 6 1 [1,10.9]
173 A0173 26 1 (20.8,30.7]
174 A0174 89 0 (80.2,90.1]
175 A0175 8 1 [1,10.9]
176 A0176 88 0 (80.2,90.1]
177 A0177 29 1 (20.8,30.7]
178 A0178 49 0 (40.6,50.5]
179 A0179 91 0 (90.1,100]
180 A0180 60 0 (50.5,60.4]
181 A0181 74 0 (70.3,80.2]
182 A0182 10 1 [1,10.9]
183 A0183 52 1 (50.5,60.4]
184 A0184 74 0 (70.3,80.2]
185 A0185 69 0 (60.4,70.3]
186 A0186 74 0 (70.3,80.2]
187 A0187 31 1 (30.7,40.6]
188 A0188 95 0 (90.1,100]
189 A0189 86 0 (80.2,90.1]
190 A0190 28 1 (20.8,30.7]
191 A0191 31 1 (30.7,40.6]
192 A0192 72 0 (70.3,80.2]
193 A0193 80 0 (70.3,80.2]
194 A0194 88 0 (80.2,90.1]
195 A0195 65 0 (60.4,70.3]
196 A0196 61 0 (60.4,70.3]
197 A0197 46 0 (40.6,50.5]
198 A0198 7 1 [1,10.9]
199 A0199 93 0 (90.1,100]
200 A0200 87 0 (80.2,90.1]
201 A0201 6 1 [1,10.9]
202 A0202 56 0 (50.5,60.4]
203 A0203 79 0 (70.3,80.2]
204 A0204 71 0 (70.3,80.2]
205 A0205 10 1 [1,10.9]
206 A0206 63 0 (60.4,70.3]
207 A0207 2 1 [1,10.9]
208 A0208 99 0 (90.1,100]
209 A0209 45 1 (40.6,50.5]
210 A0210 81 0 (80.2,90.1]
211 A0211 23 1 (20.8,30.7]
212 A0212 66 0 (60.4,70.3]
213 A0213 10 1 [1,10.9]
214 A0214 10 1 [1,10.9]
215 A0215 99 1 (90.1,100]
216 A0216 76 0 (70.3,80.2]
217 A0217 33 1 (30.7,40.6]
218 A0218 48 1 (40.6,50.5]
219 A0219 10 1 [1,10.9]
220 A0220 73 1 (70.3,80.2]
221 A0221 20 1 (10.9,20.8]
222 A0222 62 1 (60.4,70.3]
223 A0223 27 1 (20.8,30.7]
224 A0224 29 1 (20.8,30.7]
225 A0225 31 1 (30.7,40.6]
226 A0226 50 1 (40.6,50.5]
227 A0227 29 1 (20.8,30.7]
228 A0228 91 0 (90.1,100]
229 A0229 53 0 (50.5,60.4]
230 A0230 84 0 (80.2,90.1]
231 A0231 50 1 (40.6,50.5]
232 A0232 93 0 (90.1,100]
233 A0233 69 0 (60.4,70.3]
234 A0234 84 0 (80.2,90.1]
235 A0235 35 1 (30.7,40.6]
236 A0236 58 0 (50.5,60.4]
237 A0237 48 1 (40.6,50.5]
238 A0238 16 1 (10.9,20.8]
239 A0239 72 0 (70.3,80.2]
240 A0240 64 0 (60.4,70.3]
241 A0241 62 0 (60.4,70.3]
242 A0242 47 0 (40.6,50.5]
243 A0243 21 1 (20.8,30.7]
244 A0244 72 0 (70.3,80.2]
245 A0245 80 0 (70.3,80.2]
246 A0246 76 0 (70.3,80.2]
247 A0247 39 0 (30.7,40.6]
248 A0248 100 0 (90.1,100]
249 A0249 44 0 (40.6,50.5]
250 A0250 59 1 (50.5,60.4]
251 A0251 38 0 (30.7,40.6]
252 A0252 14 1 (10.9,20.8]
253 A0253 73 0 (70.3,80.2]
254 A0254 87 0 (80.2,90.1]
255 A0255 28 1 (20.8,30.7]
256 A0256 46 0 (40.6,50.5]
257 A0257 51 1 (50.5,60.4]
258 A0258 7 1 [1,10.9]
259 A0259 63 0 (60.4,70.3]
260 A0260 25 1 (20.8,30.7]
261 A0261 79 0 (70.3,80.2]
262 A0262 47 1 (40.6,50.5]
263 A0263 77 0 (70.3,80.2]
264 A0264 85 0 (80.2,90.1]
265 A0265 30 1 (20.8,30.7]
266 A0266 20 1 (10.9,20.8]
267 A0267 87 0 (80.2,90.1]
268 A0268 18 1 (10.9,20.8]
269 A0269 96 0 (90.1,100]
270 A0270 21 1 (20.8,30.7]
271 A0271 98 0 (90.1,100]
272 A0272 40 0 (30.7,40.6]
273 A0273 69 0 (60.4,70.3]
274 A0274 14 1 (10.9,20.8]
275 A0275 28 1 (20.8,30.7]
276 A0276 74 0 (70.3,80.2]
277 A0277 41 1 (40.6,50.5]
278 A0278 72 0 (70.3,80.2]
279 A0279 7 1 [1,10.9]
280 A0280 86 0 (80.2,90.1]
281 A0281 41 1 (40.6,50.5]
282 A0282 72 0 (70.3,80.2]
283 A0283 58 0 (50.5,60.4]
284 A0284 98 0 (90.1,100]
285 A0285 70 0 (60.4,70.3]
286 A0286 18 1 (10.9,20.8]
287 A0287 51 1 (50.5,60.4]
288 A0288 17 1 (10.9,20.8]
289 A0289 66 0 (60.4,70.3]
290 A0290 59 0 (50.5,60.4]
291 A0291 10 1 [1,10.9]
292 A0292 57 0 (50.5,60.4]
293 A0293 80 0 (70.3,80.2]
294 A0294 88 0 (80.2,90.1]
295 A0295 89 0 (80.2,90.1]
296 A0296 27 1 (20.8,30.7]
297 A0297 92 0 (90.1,100]
298 A0298 71 0 (70.3,80.2]
299 A0299 96 0 (90.1,100]
300 A0300 78 0 (70.3,80.2]
301 A0301 64 0 (60.4,70.3]
302 A0302 72 0 (70.3,80.2]
303 A0303 70 0 (60.4,70.3]
304 A0304 82 0 (80.2,90.1]
305 A0305 9 1 [1,10.9]
306 A0306 76 0 (70.3,80.2]
307 A0307 5 1 [1,10.9]
308 A0308 70 0 (60.4,70.3]
309 A0309 8 1 [1,10.9]
310 A0310 78 0 (70.3,80.2]
311 A0311 6 1 [1,10.9]
312 A0312 98 0 (90.1,100]
313 A0313 83 0 (80.2,90.1]
314 A0314 65 0 (60.4,70.3]
315 A0315 48 0 (40.6,50.5]
316 A0316 29 1 (20.8,30.7]
317 A0317 25 1 (20.8,30.7]
318 A0318 97 0 (90.1,100]
319 A0319 19 0 (10.9,20.8]
320 A0320 49 0 (40.6,50.5]
321 A0321 48 0 (40.6,50.5]
322 A0322 58 1 (50.5,60.4]
323 A0323 39 0 (30.7,40.6]
324 A0324 57 0 (50.5,60.4]
325 A0325 84 0 (80.2,90.1]
326 A0326 24 1 (20.8,30.7]
327 A0327 44 1 (40.6,50.5]
328 A0328 69 0 (60.4,70.3]
329 A0329 47 0 (40.6,50.5]
330 A0330 65 0 (60.4,70.3]
331 A0331 79 0 (70.3,80.2]
332 A0332 11 1 (10.9,20.8]
333 A0333 82 0 (80.2,90.1]
334 A0334 90 0 (80.2,90.1]
335 A0335 67 0 (60.4,70.3]
336 A0336 53 1 (50.5,60.4]
337 A0337 81 0 (80.2,90.1]
338 A0338 90 0 (80.2,90.1]
339 A0339 41 1 (40.6,50.5]
340 A0340 3 1 [1,10.9]
341 A0341 17 1 (10.9,20.8]
342 A0342 55 0 (50.5,60.4]
343 A0343 22 1 (20.8,30.7]
344 A0344 76 0 (70.3,80.2]
345 A0345 10 1 [1,10.9]
346 A0346 61 0 (60.4,70.3]
347 A0347 61 0 (60.4,70.3]
348 A0348 97 0 (90.1,100]
349 A0349 8 1 [1,10.9]
350 A0350 77 0 (70.3,80.2]
351 A0351 48 0 (40.6,50.5]
352 A0352 16 1 (10.9,20.8]
353 A0353 80 0 (70.3,80.2]
354 A0354 26 0 (20.8,30.7]
355 A0355 37 1 (30.7,40.6]
356 A0356 45 0 (40.6,50.5]
357 A0357 21 1 (20.8,30.7]
358 A0358 30 1 (20.8,30.7]
359 A0359 7 1 [1,10.9]
360 A0360 6 1 [1,10.9]
361 A0361 76 0 (70.3,80.2]
362 A0362 44 1 (40.6,50.5]
363 A0363 57 0 (50.5,60.4]
364 A0364 43 0 (40.6,50.5]
365 A0365 46 1 (40.6,50.5]
366 A0366 59 0 (50.5,60.4]
367 A0367 75 0 (70.3,80.2]
368 A0368 73 0 (70.3,80.2]
369 A0369 62 0 (60.4,70.3]
370 A0370 75 0 (70.3,80.2]
371 A0371 72 0 (70.3,80.2]
372 A0372 13 1 (10.9,20.8]
373 A0373 40 0 (30.7,40.6]
374 A0374 46 0 (40.6,50.5]
375 A0375 2 1 [1,10.9]
376 A0376 95 0 (90.1,100]
377 A0377 78 0 (70.3,80.2]
378 A0378 67 0 (60.4,70.3]
379 A0379 16 1 (10.9,20.8]
380 A0380 95 0 (90.1,100]
381 A0381 38 1 (30.7,40.6]
382 A0382 69 0 (60.4,70.3]
383 A0383 88 0 (80.2,90.1]
384 A0384 87 0 (80.2,90.1]
385 A0385 95 0 (90.1,100]
386 A0386 8 1 [1,10.9]
387 A0387 28 1 (20.8,30.7]
388 A0388 8 1 [1,10.9]
389 A0389 95 1 (90.1,100]
390 A0390 8 1 [1,10.9]
391 A0391 60 0 (50.5,60.4]
392 A0392 39 0 (30.7,40.6]
393 A0393 38 1 (30.7,40.6]
394 A0394 44 1 (40.6,50.5]
395 A0395 51 1 (50.5,60.4]
396 A0396 95 1 (90.1,100]
397 A0397 82 0 (80.2,90.1]
398 A0398 17 1 (10.9,20.8]
399 A0399 55 0 (50.5,60.4]
400 A0400 96 0 (90.1,100]
401 A0401 44 1 (40.6,50.5]
402 A0402 36 1 (30.7,40.6]
403 A0403 23 1 (20.8,30.7]
404 A0404 14 1 (10.9,20.8]
405 A0405 91 0 (90.1,100]
406 A0406 87 0 (80.2,90.1]
407 A0407 1 1 [1,10.9]
408 A0408 97 0 (90.1,100]
409 A0409 39 0 (30.7,40.6]
410 A0410 92 0 (90.1,100]
411 A0411 52 0 (50.5,60.4]
412 A0412 9 1 [1,10.9]
413 A0413 31 1 (30.7,40.6]
414 A0414 89 0 (80.2,90.1]
415 A0415 59 0 (50.5,60.4]
416 A0416 63 1 (60.4,70.3]
417 A0417 91 0 (90.1,100]
418 A0418 90 0 (80.2,90.1]
419 A0419 69 0 (60.4,70.3]
420 A0420 62 0 (60.4,70.3]
421 A0421 60 0 (50.5,60.4]
422 A0422 57 1 (50.5,60.4]
423 A0423 51 0 (50.5,60.4]
424 A0424 90 0 (80.2,90.1]
425 A0425 95 0 (90.1,100]
426 A0426 15 1 (10.9,20.8]
427 A0427 9 1 [1,10.9]
428 A0428 24 1 (20.8,30.7]
429 A0429 18 1 (10.9,20.8]
430 A0430 95 0 (90.1,100]
431 A0431 11 1 (10.9,20.8]
432 A0432 67 0 (60.4,70.3]
433 A0433 57 0 (50.5,60.4]
434 A0434 11 1 (10.9,20.8]
435 A0435 72 0 (70.3,80.2]
436 A0436 77 0 (70.3,80.2]
437 A0437 74 0 (70.3,80.2]
438 A0438 19 1 (10.9,20.8]
439 A0439 59 1 (50.5,60.4]
440 A0440 51 1 (50.5,60.4]
441 A0441 56 0 (50.5,60.4]
442 A0442 67 0 (60.4,70.3]
443 A0443 36 1 (30.7,40.6]
444 A0444 55 0 (50.5,60.4]
445 A0445 98 0 (90.1,100]
446 A0446 93 0 (90.1,100]
447 A0447 37 1 (30.7,40.6]
448 A0448 77 0 (70.3,80.2]
449 A0449 90 0 (80.2,90.1]
450 A0450 88 0 (80.2,90.1]
451 A0451 7 1 [1,10.9]
452 A0452 35 1 (30.7,40.6]
453 A0453 10 1 [1,10.9]
454 A0454 52 1 (50.5,60.4]
455 A0455 90 0 (80.2,90.1]
456 A0456 10 1 [1,10.9]
457 A0457 66 0 (60.4,70.3]
458 A0458 89 0 (80.2,90.1]
459 A0459 13 1 (10.9,20.8]
460 A0460 77 0 (70.3,80.2]
461 A0461 84 0 (80.2,90.1]
462 A0462 26 1 (20.8,30.7]
463 A0463 37 1 (30.7,40.6]
464 A0464 17 1 (10.9,20.8]
465 A0465 49 1 (40.6,50.5]
466 A0466 5 1 [1,10.9]
467 A0467 14 1 (10.9,20.8]
468 A0468 43 1 (40.6,50.5]
469 A0469 98 0 (90.1,100]
470 A0470 23 1 (20.8,30.7]
471 A0471 62 0 (60.4,70.3]
472 A0472 10 1 [1,10.9]
473 A0473 3 1 [1,10.9]
474 A0474 99 0 (90.1,100]
475 A0475 21 1 (20.8,30.7]
476 A0476 8 1 [1,10.9]
477 A0477 88 0 (80.2,90.1]
478 A0478 78 0 (70.3,80.2]
479 A0479 56 1 (50.5,60.4]
480 A0480 12 1 (10.9,20.8]
481 A0481 85 0 (80.2,90.1]
482 A0482 18 1 (10.9,20.8]
483 A0483 87 0 (80.2,90.1]
484 A0484 77 0 (70.3,80.2]
485 A0485 1 1 [1,10.9]
486 A0486 60 0 (50.5,60.4]
487 A0487 6 1 [1,10.9]
488 A0488 85 0 (80.2,90.1]
489 A0489 32 0 (30.7,40.6]
490 A0490 88 0 (80.2,90.1]
491 A0491 47 1 (40.6,50.5]
492 A0492 58 0 (50.5,60.4]
493 A0493 36 1 (30.7,40.6]
494 A0494 94 0 (90.1,100]
495 A0495 17 1 (10.9,20.8]
496 A0496 69 1 (60.4,70.3]
497 A0497 60 0 (50.5,60.4]
498 A0498 86 0 (80.2,90.1]
499 A0499 9 0 [1,10.9]
500 A0500 27 1 (20.8,30.7]
501 A0501 58 0 (50.5,60.4]
502 A0502 32 0 (30.7,40.6]
503 A0503 1 1 [1,10.9]
504 A0504 14 1 (10.9,20.8]
505 A0505 93 0 (90.1,100]
506 A0506 6 1 [1,10.9]
507 A0507 43 0 (40.6,50.5]
508 A0508 47 0 (40.6,50.5]
509 A0509 73 0 (70.3,80.2]
510 A0510 31 1 (30.7,40.6]
511 A0511 17 1 (10.9,20.8]
512 A0512 1 1 [1,10.9]
513 A0513 48 1 (40.6,50.5]
514 A0514 9 1 [1,10.9]
515 A0515 68 0 (60.4,70.3]
516 A0516 91 0 (90.1,100]
517 A0517 61 0 (60.4,70.3]
518 A0518 55 0 (50.5,60.4]
519 A0519 15 1 (10.9,20.8]
520 A0520 100 0 (90.1,100]
521 A0521 91 0 (90.1,100]
522 A0522 34 0 (30.7,40.6]
523 A0523 18 1 (10.9,20.8]
524 A0524 67 0 (60.4,70.3]
525 A0525 2 1 [1,10.9]
526 A0526 60 0 (50.5,60.4]
527 A0527 41 0 (40.6,50.5]
528 A0528 50 1 (40.6,50.5]
529 A0529 4 1 [1,10.9]
530 A0530 98 0 (90.1,100]
531 A0531 85 0 (80.2,90.1]
532 A0532 74 1 (70.3,80.2]
533 A0533 69 0 (60.4,70.3]
534 A0534 33 1 (30.7,40.6]
535 A0535 71 0 (70.3,80.2]
536 A0536 68 0 (60.4,70.3]
537 A0537 54 0 (50.5,60.4]
538 A0538 13 1 (10.9,20.8]
539 A0539 32 1 (30.7,40.6]
540 A0540 26 1 (20.8,30.7]
541 A0541 42 0 (40.6,50.5]
542 A0542 28 1 (20.8,30.7]
543 A0543 14 1 (10.9,20.8]
544 A0544 72 0 (70.3,80.2]
545 A0545 68 0 (60.4,70.3]
546 A0546 48 1 (40.6,50.5]
547 A0547 13 1 (10.9,20.8]
548 A0548 6 1 [1,10.9]
549 A0549 51 1 (50.5,60.4]
550 A0550 79 0 (70.3,80.2]
551 A0551 71 0 (70.3,80.2]
552 A0552 37 1 (30.7,40.6]
553 A0553 34 1 (30.7,40.6]
554 A0554 58 1 (50.5,60.4]
555 A0555 76 0 (70.3,80.2]
556 A0556 72 0 (70.3,80.2]
557 A0557 79 0 (70.3,80.2]
558 A0558 17 1 (10.9,20.8]
559 A0559 98 0 (90.1,100]
560 A0560 2 1 [1,10.9]
561 A0561 88 0 (80.2,90.1]
562 A0562 10 1 [1,10.9]
563 A0563 75 0 (70.3,80.2]
564 A0564 96 0 (90.1,100]
565 A0565 10 1 [1,10.9]
566 A0566 100 0 (90.1,100]
567 A0567 42 0 (40.6,50.5]
568 A0568 48 0 (40.6,50.5]
569 A0569 5 1 [1,10.9]
570 A0570 84 0 (80.2,90.1]
571 A0571 25 1 (20.8,30.7]
572 A0572 51 0 (50.5,60.4]
573 A0573 59 0 (50.5,60.4]
574 A0574 89 0 (80.2,90.1]
575 A0575 24 1 (20.8,30.7]
576 A0576 67 0 (60.4,70.3]
577 A0577 90 0 (80.2,90.1]
578 A0578 28 1 (20.8,30.7]
579 A0579 57 0 (50.5,60.4]
580 A0580 48 1 (40.6,50.5]
581 A0581 80 0 (70.3,80.2]
582 A0582 58 0 (50.5,60.4]
583 A0583 65 0 (60.4,70.3]
584 A0584 14 1 (10.9,20.8]
585 A0585 47 0 (40.6,50.5]
586 A0586 92 0 (90.1,100]
587 A0587 95 0 (90.1,100]
588 A0588 93 0 (90.1,100]
589 A0589 81 0 (80.2,90.1]
590 A0590 37 0 (30.7,40.6]
591 A0591 87 0 (80.2,90.1]
592 A0592 56 0 (50.5,60.4]
593 A0593 87 0 (80.2,90.1]
594 A0594 21 1 (20.8,30.7]
595 A0595 35 1 (30.7,40.6]
596 A0596 62 0 (60.4,70.3]
597 A0597 14 1 (10.9,20.8]
598 A0598 62 1 (60.4,70.3]
599 A0599 4 1 [1,10.9]
600 A0600 74 0 (70.3,80.2]
601 A0601 85 0 (80.2,90.1]
602 A0602 94 0 (90.1,100]
603 A0603 39 1 (30.7,40.6]
604 A0604 47 1 (40.6,50.5]
605 A0605 15 1 (10.9,20.8]
606 A0606 27 1 (20.8,30.7]
607 A0607 38 1 (30.7,40.6]
608 A0608 25 1 (20.8,30.7]
609 A0609 71 0 (70.3,80.2]
610 A0610 8 1 [1,10.9]
611 A0611 69 0 (60.4,70.3]
612 A0612 51 0 (50.5,60.4]
613 A0613 81 0 (80.2,90.1]
614 A0614 15 1 (10.9,20.8]
615 A0615 5 1 [1,10.9]
616 A0616 53 0 (50.5,60.4]
617 A0617 60 0 (50.5,60.4]
618 A0618 10 1 [1,10.9]
619 A0619 25 1 (20.8,30.7]
620 A0620 59 1 (50.5,60.4]
621 A0621 82 0 (80.2,90.1]
622 A0622 85 0 (80.2,90.1]
623 A0623 91 0 (90.1,100]
624 A0624 68 0 (60.4,70.3]
625 A0625 83 0 (80.2,90.1]
626 A0626 52 0 (50.5,60.4]
627 A0627 60 0 (50.5,60.4]
628 A0628 26 1 (20.8,30.7]
629 A0629 15 1 (10.9,20.8]
630 A0630 67 0 (60.4,70.3]
631 A0631 91 0 (90.1,100]
632 A0632 25 1 (20.8,30.7]
633 A0633 45 1 (40.6,50.5]
634 A0634 95 0 (90.1,100]
635 A0635 75 1 (70.3,80.2]
636 A0636 48 1 (40.6,50.5]
637 A0637 72 0 (70.3,80.2]
638 A0638 31 1 (30.7,40.6]
639 A0639 88 0 (80.2,90.1]
640 A0640 29 1 (20.8,30.7]
641 A0641 90 0 (80.2,90.1]
642 A0642 26 1 (20.8,30.7]
643 A0643 70 1 (60.4,70.3]
644 A0644 21 1 (20.8,30.7]
645 A0645 86 0 (80.2,90.1]
646 A0646 91 0 (90.1,100]
647 A0647 55 1 (50.5,60.4]
648 A0648 60 0 (50.5,60.4]
649 A0649 36 0 (30.7,40.6]
650 A0650 32 1 (30.7,40.6]
651 A0651 98 0 (90.1,100]
652 A0652 94 0 (90.1,100]
653 A0653 63 0 (60.4,70.3]
654 A0654 63 0 (60.4,70.3]
655 A0655 9 1 [1,10.9]
656 A0656 61 0 (60.4,70.3]
657 A0657 12 1 (10.9,20.8]
658 A0658 40 1 (30.7,40.6]
659 A0659 85 0 (80.2,90.1]
660 A0660 68 1 (60.4,70.3]
661 A0661 98 0 (90.1,100]
662 A0662 21 1 (20.8,30.7]
663 A0663 64 0 (60.4,70.3]
664 A0664 86 0 (80.2,90.1]
665 A0665 77 0 (70.3,80.2]
666 A0666 5 1 [1,10.9]
667 A0667 75 0 (70.3,80.2]
668 A0668 30 0 (20.8,30.7]
669 A0669 96 0 (90.1,100]
670 A0670 94 0 (90.1,100]
671 A0671 50 0 (40.6,50.5]
672 A0672 16 1 (10.9,20.8]
673 A0673 67 0 (60.4,70.3]
674 A0674 77 0 (70.3,80.2]
675 A0675 84 0 (80.2,90.1]
676 A0676 4 1 [1,10.9]
677 A0677 70 0 (60.4,70.3]
678 A0678 74 0 (70.3,80.2]
679 A0679 80 0 (70.3,80.2]
680 A0680 93 0 (90.1,100]
681 A0681 65 0 (60.4,70.3]
682 A0682 28 1 (20.8,30.7]
683 A0683 81 0 (80.2,90.1]
684 A0684 67 0 (60.4,70.3]
685 A0685 60 0 (50.5,60.4]
686 A0686 4 1 [1,10.9]
687 A0687 20 1 (10.9,20.8]
688 A0688 21 1 (20.8,30.7]
689 A0689 73 0 (70.3,80.2]
690 A0690 99 0 (90.1,100]
691 A0691 93 0 (90.1,100]
692 A0692 27 1 (20.8,30.7]
693 A0693 36 1 (30.7,40.6]
694 A0694 36 1 (30.7,40.6]
695 A0695 84 0 (80.2,90.1]
696 A0696 34 1 (30.7,40.6]
697 A0697 55 0 (50.5,60.4]
698 A0698 54 0 (50.5,60.4]
699 A0699 98 0 (90.1,100]
700 A0700 56 0 (50.5,60.4]
701 A0701 21 1 (20.8,30.7]
702 A0702 60 0 (50.5,60.4]
703 A0703 68 0 (60.4,70.3]
704 A0704 29 1 (20.8,30.7]
705 A0705 69 0 (60.4,70.3]
706 A0706 28 1 (20.8,30.7]
707 A0707 99 0 (90.1,100]
708 A0708 24 0 (20.8,30.7]
709 A0709 47 1 (40.6,50.5]
710 A0710 1 1 [1,10.9]
711 A0711 93 0 (90.1,100]
712 A0712 97 0 (90.1,100]
713 A0713 3 1 [1,10.9]
714 A0714 51 1 (50.5,60.4]
715 A0715 91 0 (90.1,100]
716 A0716 27 1 (20.8,30.7]
717 A0717 10 1 [1,10.9]
718 A0718 58 1 (50.5,60.4]
719 A0719 99 0 (90.1,100]
720 A0720 12 1 (10.9,20.8]
721 A0721 13 1 (10.9,20.8]
722 A0722 92 0 (90.1,100]
723 A0723 53 0 (50.5,60.4]
724 A0724 4 1 [1,10.9]
725 A0725 29 1 (20.8,30.7]
726 A0726 24 1 (20.8,30.7]
727 A0727 31 1 (30.7,40.6]
728 A0728 51 0 (50.5,60.4]
729 A0729 89 0 (80.2,90.1]
730 A0730 13 1 (10.9,20.8]
731 A0731 35 0 (30.7,40.6]
732 A0732 72 0 (70.3,80.2]
733 A0733 23 1 (20.8,30.7]
734 A0734 58 0 (50.5,60.4]
735 A0735 9 1 [1,10.9]
736 A0736 67 0 (60.4,70.3]
737 A0737 26 1 (20.8,30.7]
738 A0738 40 1 (30.7,40.6]
739 A0739 6 1 [1,10.9]
740 A0740 76 0 (70.3,80.2]
741 A0741 4 1 [1,10.9]
742 A0742 23 1 (20.8,30.7]
743 A0743 63 0 (60.4,70.3]
744 A0744 56 0 (50.5,60.4]
745 A0745 28 0 (20.8,30.7]
746 A0746 37 1 (30.7,40.6]
747 A0747 65 1 (60.4,70.3]
748 A0748 54 1 (50.5,60.4]
749 A0749 77 0 (70.3,80.2]
750 A0750 57 0 (50.5,60.4]
751 A0751 64 0 (60.4,70.3]
752 A0752 12 1 (10.9,20.8]
753 A0753 22 1 (20.8,30.7]
754 A0754 46 0 (40.6,50.5]
755 A0755 76 0 (70.3,80.2]
756 A0756 17 1 (10.9,20.8]
757 A0757 18 1 (10.9,20.8]
758 A0758 27 1 (20.8,30.7]
759 A0759 17 1 (10.9,20.8]
760 A0760 34 1 (30.7,40.6]
761 A0761 66 0 (60.4,70.3]
762 A0762 58 0 (50.5,60.4]
763 A0763 73 0 (70.3,80.2]
764 A0764 62 1 (60.4,70.3]
765 A0765 57 1 (50.5,60.4]
766 A0766 18 1 (10.9,20.8]
767 A0767 13 1 (10.9,20.8]
768 A0768 12 1 (10.9,20.8]
769 A0769 17 1 (10.9,20.8]
770 A0770 80 0 (70.3,80.2]
771 A0771 84 0 (80.2,90.1]
772 A0772 63 0 (60.4,70.3]
773 A0773 9 1 [1,10.9]
774 A0774 49 1 (40.6,50.5]
775 A0775 22 1 (20.8,30.7]
776 A0776 70 0 (60.4,70.3]
777 A0777 65 1 (60.4,70.3]
778 A0778 44 1 (40.6,50.5]
779 A0779 51 1 (50.5,60.4]
780 A0780 70 0 (60.4,70.3]
781 A0781 52 1 (50.5,60.4]
782 A0782 51 0 (50.5,60.4]
783 A0783 1 1 [1,10.9]
784 A0784 52 0 (50.5,60.4]
785 A0785 17 0 (10.9,20.8]
786 A0786 8 1 [1,10.9]
787 A0787 50 0 (40.6,50.5]
788 A0788 10 1 [1,10.9]
789 A0789 95 0 (90.1,100]
790 A0790 23 1 (20.8,30.7]
791 A0791 36 1 (30.7,40.6]
792 A0792 34 1 (30.7,40.6]
793 A0793 20 1 (10.9,20.8]
794 A0794 38 1 (30.7,40.6]
795 A0795 94 0 (90.1,100]
796 A0796 14 1 (10.9,20.8]
797 A0797 1 1 [1,10.9]
798 A0798 81 0 (80.2,90.1]
799 A0799 69 0 (60.4,70.3]
800 A0800 37 1 (30.7,40.6]
801 A0801 61 0 (60.4,70.3]
802 A0802 12 1 (10.9,20.8]
803 A0803 1 1 [1,10.9]
804 A0804 93 0 (90.1,100]
805 A0805 100 0 (90.1,100]
806 A0806 61 0 (60.4,70.3]
807 A0807 4 1 [1,10.9]
808 A0808 3 1 [1,10.9]
809 A0809 91 0 (90.1,100]
810 A0810 89 0 (80.2,90.1]
811 A0811 14 1 (10.9,20.8]
812 A0812 73 0 (70.3,80.2]
813 A0813 89 0 (80.2,90.1]
814 A0814 47 0 (40.6,50.5]
815 A0815 39 1 (30.7,40.6]
816 A0816 34 1 (30.7,40.6]
817 A0817 26 1 (20.8,30.7]
818 A0818 73 0 (70.3,80.2]
819 A0819 55 1 (50.5,60.4]
820 A0820 47 1 (40.6,50.5]
821 A0821 64 0 (60.4,70.3]
822 A0822 43 1 (40.6,50.5]
823 A0823 47 1 (40.6,50.5]
824 A0824 39 1 (30.7,40.6]
825 A0825 66 0 (60.4,70.3]
826 A0826 20 1 (10.9,20.8]
827 A0827 70 0 (60.4,70.3]
828 A0828 41 1 (40.6,50.5]
829 A0829 90 0 (80.2,90.1]
830 A0830 40 1 (30.7,40.6]
831 A0831 8 1 [1,10.9]
832 A0832 47 0 (40.6,50.5]
833 A0833 97 0 (90.1,100]
834 A0834 93 0 (90.1,100]
835 A0835 19 1 (10.9,20.8]
836 A0836 18 1 (10.9,20.8]
837 A0837 29 1 (20.8,30.7]
838 A0838 55 1 (50.5,60.4]
839 A0839 72 0 (70.3,80.2]
840 A0840 62 0 (60.4,70.3]
841 A0841 84 0 (80.2,90.1]
842 A0842 23 1 (20.8,30.7]
843 A0843 6 1 [1,10.9]
844 A0844 56 0 (50.5,60.4]
845 A0845 3 1 [1,10.9]
846 A0846 20 1 (10.9,20.8]
847 A0847 61 0 (60.4,70.3]
848 A0848 43 1 (40.6,50.5]
849 A0849 38 1 (30.7,40.6]
850 A0850 92 0 (90.1,100]
851 A0851 60 0 (50.5,60.4]
852 A0852 76 0 (70.3,80.2]
853 A0853 1 1 [1,10.9]
854 A0854 44 1 (40.6,50.5]
855 A0855 92 0 (90.1,100]
856 A0856 89 0 (80.2,90.1]
857 A0857 5 1 [1,10.9]
858 A0858 29 1 (20.8,30.7]
859 A0859 55 0 (50.5,60.4]
860 A0860 13 1 (10.9,20.8]
861 A0861 24 1 (20.8,30.7]
862 A0862 58 0 (50.5,60.4]
863 A0863 32 1 (30.7,40.6]
864 A0864 98 0 (90.1,100]
865 A0865 12 1 (10.9,20.8]
866 A0866 21 1 (20.8,30.7]
867 A0867 85 0 (80.2,90.1]
868 A0868 81 0 (80.2,90.1]
869 A0869 16 0 (10.9,20.8]
870 A0870 16 1 (10.9,20.8]
871 A0871 55 1 (50.5,60.4]
872 A0872 45 0 (40.6,50.5]
873 A0873 5 1 [1,10.9]
874 A0874 17 1 (10.9,20.8]
875 A0875 91 0 (90.1,100]
876 A0876 45 1 (40.6,50.5]
877 A0877 45 1 (40.6,50.5]
878 A0878 96 0 (90.1,100]
879 A0879 28 0 (20.8,30.7]
880 A0880 36 1 (30.7,40.6]
881 A0881 99 0 (90.1,100]
882 A0882 27 1 (20.8,30.7]
883 A0883 16 1 (10.9,20.8]
884 A0884 84 0 (80.2,90.1]
885 A0885 80 0 (70.3,80.2]
886 A0886 15 1 (10.9,20.8]
887 A0887 56 0 (50.5,60.4]
888 A0888 22 1 (20.8,30.7]
889 A0889 47 1 (40.6,50.5]
890 A0890 41 1 (40.6,50.5]
891 A0891 52 0 (50.5,60.4]
892 A0892 50 0 (40.6,50.5]
893 A0893 75 0 (70.3,80.2]
894 A0894 63 0 (60.4,70.3]
895 A0895 6 0 [1,10.9]
896 A0896 78 0 (70.3,80.2]
897 A0897 13 1 (10.9,20.8]
898 A0898 41 1 (40.6,50.5]
899 A0899 83 0 (80.2,90.1]
900 A0900 18 1 (10.9,20.8]
901 A0901 52 0 (50.5,60.4]
902 A0902 64 0 (60.4,70.3]
903 A0903 3 1 [1,10.9]
904 A0904 41 0 (40.6,50.5]
905 A0905 65 0 (60.4,70.3]
906 A0906 80 0 (70.3,80.2]
907 A0907 82 0 (80.2,90.1]
908 A0908 58 0 (50.5,60.4]
909 A0909 99 0 (90.1,100]
910 A0910 81 0 (80.2,90.1]
911 A0911 87 1 (80.2,90.1]
912 A0912 89 0 (80.2,90.1]
913 A0913 87 0 (80.2,90.1]
914 A0914 19 1 (10.9,20.8]
915 A0915 78 0 (70.3,80.2]
916 A0916 93 0 (90.1,100]
917 A0917 90 0 (80.2,90.1]
918 A0918 80 0 (70.3,80.2]
919 A0919 38 1 (30.7,40.6]
920 A0920 64 0 (60.4,70.3]
921 A0921 1 1 [1,10.9]
922 A0922 89 0 (80.2,90.1]
923 A0923 92 0 (90.1,100]
924 A0924 35 1 (30.7,40.6]
925 A0925 90 0 (80.2,90.1]
926 A0926 89 0 (80.2,90.1]
927 A0927 53 0 (50.5,60.4]
928 A0928 79 0 (70.3,80.2]
929 A0929 98 0 (90.1,100]
930 A0930 77 0 (70.3,80.2]
931 A0931 97 0 (90.1,100]
932 A0932 97 0 (90.1,100]
933 A0933 87 0 (80.2,90.1]
934 A0934 74 0 (70.3,80.2]
935 A0935 52 1 (50.5,60.4]
936 A0936 33 1 (30.7,40.6]
937 A0937 82 0 (80.2,90.1]
938 A0938 87 0 (80.2,90.1]
939 A0939 79 0 (70.3,80.2]
940 A0940 85 0 (80.2,90.1]
941 A0941 86 0 (80.2,90.1]
942 A0942 73 0 (70.3,80.2]
943 A0943 96 0 (90.1,100]
944 A0944 14 1 (10.9,20.8]
945 A0945 7 1 [1,10.9]
946 A0946 67 0 (60.4,70.3]
947 A0947 89 0 (80.2,90.1]
948 A0948 30 1 (20.8,30.7]
949 A0949 94 0 (90.1,100]
950 A0950 92 0 (90.1,100]
951 A0951 47 1 (40.6,50.5]
952 A0952 23 0 (20.8,30.7]
953 A0953 83 0 (80.2,90.1]
954 A0954 63 0 (60.4,70.3]
955 A0955 69 1 (60.4,70.3]
956 A0956 11 1 (10.9,20.8]
957 A0957 10 1 [1,10.9]
958 A0958 26 1 (20.8,30.7]
959 A0959 32 0 (30.7,40.6]
960 A0960 97 0 (90.1,100]
961 A0961 5 1 [1,10.9]
962 A0962 44 1 (40.6,50.5]
963 A0963 100 0 (90.1,100]
964 A0964 46 1 (40.6,50.5]
965 A0965 92 0 (90.1,100]
966 A0966 23 1 (20.8,30.7]
967 A0967 11 1 (10.9,20.8]
968 A0968 49 1 (40.6,50.5]
969 A0969 29 1 (20.8,30.7]
970 A0970 63 0 (60.4,70.3]
971 A0971 87 0 (80.2,90.1]
972 A0972 42 1 (40.6,50.5]
973 A0973 8 1 [1,10.9]
974 A0974 33 1 (30.7,40.6]
975 A0975 21 1 (20.8,30.7]
976 A0976 78 0 (70.3,80.2]
977 A0977 1 1 [1,10.9]
978 A0978 28 1 (20.8,30.7]
979 A0979 63 0 (60.4,70.3]
980 A0980 11 1 (10.9,20.8]
981 A0981 19 1 (10.9,20.8]
982 A0982 14 0 (10.9,20.8]
983 A0983 76 0 (70.3,80.2]
984 A0984 29 1 (20.8,30.7]
985 A0985 8 1 [1,10.9]
986 A0986 25 1 (20.8,30.7]
987 A0987 90 0 (80.2,90.1]
988 A0988 59 0 (50.5,60.4]
989 A0989 52 0 (50.5,60.4]
990 A0990 19 1 (10.9,20.8]
991 A0991 56 0 (50.5,60.4]
992 A0992 97 0 (90.1,100]
993 A0993 9 1 [1,10.9]
994 A0994 11 1 (10.9,20.8]
995 A0995 9 1 [1,10.9]
996 A0996 98 0 (90.1,100]
997 A0997 6 1 [1,10.9]
998 A0998 9 1 [1,10.9]
999 A0999 17 1 (10.9,20.8]
1000 A1000 15 1 (10.9,20.8]
id quality SPLATTED bin
A0001 : 1 Min. : 1.0 Min. :0.000 (90.1,100] :114
A0002 : 1 1st Qu.: 26.0 1st Qu.:0.000 (80.2,90.1]:112
A0003 : 1 Median : 55.0 Median :0.000 [1,10.9] :109
A0004 : 1 Mean : 52.1 Mean :0.452 (60.4,70.3]:104
A0005 : 1 3rd Qu.: 78.0 3rd Qu.:1.000 (50.5,60.4]:103
A0006 : 1 Max. :100.0 Max. :1.000 (70.3,80.2]:103
(Other):994 (Other) :355
singers |>
mutate(bin = cut_interval(quality, 10)) |>
group_by(bin) |>
summarise(prop = mean(SPLATTED))
# A tibble: 10 × 2
bin prop
<fct> <dbl>
1 [1,10.9] 0.982
2 (10.9,20.8] 0.959
3 (20.8,30.7] 0.935
4 (30.7,40.6] 0.803
5 (40.6,50.5] 0.573
6 (50.5,60.4] 0.311
7 (60.4,70.3] 0.115
8 (70.3,80.2] 0.0388
9 (80.2,90.1] 0.00893
10 (90.1,100] 0.0351
Warning: unexpected number of rows -> 999
{sjPlot}
, {effects}
etc.
set some parameters
instant pretty output
{broom}
, {ggplot2}
, etc.
intermediate calculations
work to make pretty output
more likely to understand where the numbers come from
play with other datasets
many datasets built in to R and its libraries
worth thinking about how far you’ve come
got to grips with stats, graphics
\(t\), \(F\), \(\chi^2\), \(R^2\), intercepts, slopes, logits, confidence intervals…
got to grips with programming variables, functions, {tidyverse}
, {ggplot2}
, libraries, RStudio…
playing with .Rmd
etc
Twenty-nine teams involving 61 analysts used the same data set to address the same research question: whether soccer referees are more likely to give red cards to dark-skin-toned players than to light-skin-toned players. Analytic approaches varied widely across the teams, and the estimated effect sizes ranged from 0.89 to 2.93 (Mdn = 1.31) in odds-ratio units. Twenty teams (69%) found a statistically significant positive effect, and 9 teams (31%) did not observe a significant relationship.
Silberzahn, R., et al. (2018). https://doi.org/10/gd2429