

Week 9: Scaling, Contrasts, Interactions

Univariate Statistics and Methodology using R

Department of Psychology The University of Edinburgh

Part 1 Scaling

Learning to Read

age	hrs_wk	method	R_AGE
10.115	4.971	phonics	14.272
9.940	4.677	phonics	13.692
6.060	4.619	phonics	10.353
9.269	4.894	phonics	12.744
10.991	5.035	phonics	15.353
6.535	5.272	word	5.798
8.150	6.871	word	8.691
7.941	4.053	word	6.988
8.233	5.474	word	8.713
6.219	4.038	word	5.908

Learning to Read

... Estimate Std. Error t value Pr(>|t|) ## 2.472 -0.98 ## (Intercept) -2.423 0.332 ## age 0.938 0.206 4.55 0.000038 *** ## hrs_wk 2.31 0.025 * 0.964 0.418 ## ...

Learning to Read

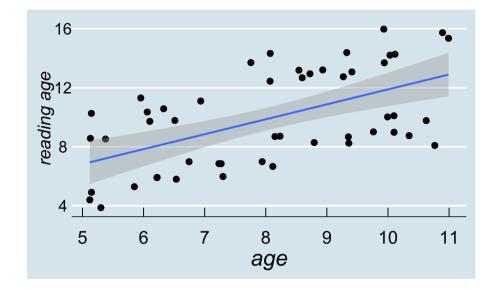
##	• • •						
##		Estimate	Std.	Error	t value	Pr(> t)	
##	(Intercept)	-2.423		2.472	-0.98	0.332	
##	age	0.938		0.206	4.55	0.000038	***
##	hrs_wk	0.964		0.418	2.31	0.025	*
##							

- as we noted last week, the *intercept* for this model is nonsensical
 - "children aged zero who read for zero hours a week have a predicted reading age of -2.423"
- perhaps there's something we can do about this?

One-Predictor Model

• let's start with a model with a *single* predictor of age¹

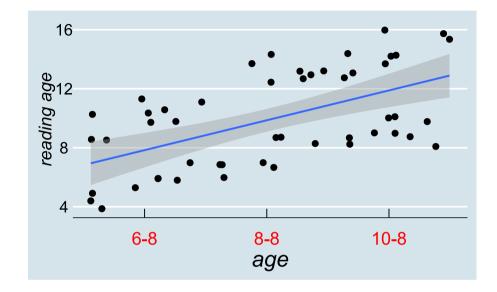
```
# model
mod2 <- lm(R_AGE ~ age,data=reading)
# figure
p <- reading %>% ggplot(aes(x=age,y=R_AGE)) +
    xlab("age") + ylab("reading age") +
    geom_point(size=3) +
    geom_smooth(method="lm")
p
```



¹ we know this model doesn't meet assumptions, but it will work for an illustration

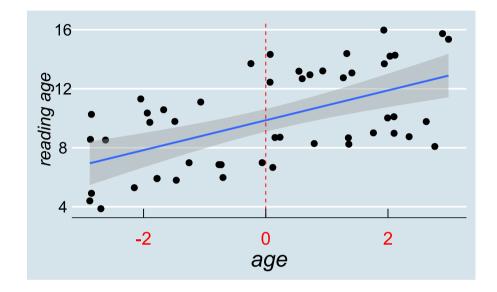
Changing the Intercept

- actually it's fairly easy to move the intercept
- we can just pick a "useful-looking" value
- for example, we might want the intercept to tell us about students at age 8
 - this is a decision; no magic about it



Changing the Intercept

- actually it's fairly easy to move the intercept
- we can just pick a "useful-looking" value
- for example, we might want the intercept to tell us about students at age 8
 - this is a decision; no magic about it



A Model With a New Intercept

original model

...
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.764 1.753 1.01 0.32
age 1.012 0.212 4.76 0.000018 ***
...

new model

mod2b <- lm(R_AGE ~ I(age-8), data=reading)
summary(mod2b)</pre>

...
Estimate Std. Error t value Pr(>|t|)
(Intercept) 9.862 0.383 25.77 < 2e-16 ***
I(age - 8) 1.012 0.212 4.76 0.000018 ***
...</pre>

Fit Remains Unchanged

original model

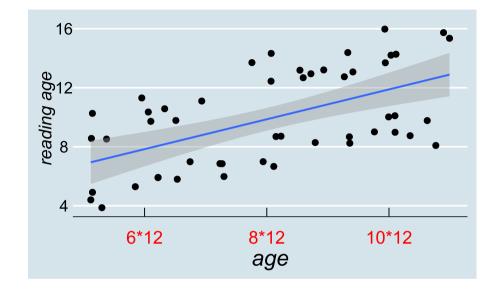
...
Multiple R-squared: 0.321, Adjusted R-squared: 0.307
F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

new model

...
Multiple R-squared: 0.321, Adjusted R-squared: 0.307
F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

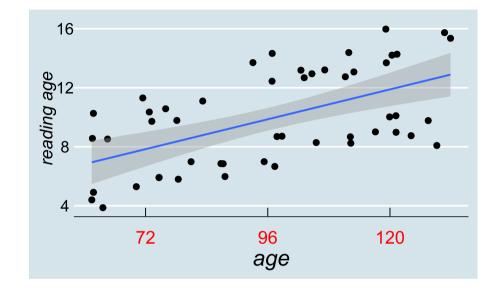
A Model with a New Slope

- it's also easy to linearly scale the slope
- we can just pick a "useful" scale
- for example, we might want to examine the effect per month of age
 - this is a decision; no magic about it



A Model with a New Slope

- it's also easy to linearly scale the slope
- we can just pick a "useful" scale
- for example, we might want to examine the effect per month of age
 - this is a decision; no magic about it



A Model With a New Slope

original model

...
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.764 1.753 1.01 0.32
age 1.012 0.212 4.76 0.000018 ***
...

new model

mod2c <- lm(R_AGE ~ I(age*12), data=reading)
summary(mod2c)</pre>

...
Estimate Std. Error t value Pr(>|t|)
(Intercept) 1.7638 1.7534 1.01 0.32
I(age * 12) 0.0844 0.0177 4.76 0.000018 ***
...

Fit Remains Unchanged

original model

...
Multiple R-squared: 0.321, Adjusted R-squared: 0.307
F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

new model

...
Multiple R-squared: 0.321, Adjusted R-squared: 0.307
F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

We Can Get Fancy About This

```
mod.mb <- lm(R_AGE ~ I((age-8)*12) + I(hrs_wk-mean(hrs_wk)), data=reading)
summary(mod.mb)</pre>
```

```
##
## Call:
## lm(formula = R_AGE \sim I((age - 8) * 12) + I(hrs_wk - mean(hrs_wk)),
      data = reading)
##
##
## Residuals:
             1Q Median
##
     Min
                                 Мах
                           3Q
## -4.385 -2.251 0.326 2.395 3.201
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             9.8659
                                        0.3665
                                                26.92 < 2e-16 ***
## I((age - 8) * 12)
                             0.0782
                                        0.0172
                                                  4.55 0.000038 ***
## I(hrs wk - mean(hrs wk)) 0.9636
                                        0.4176
                                                  2.31
                                                         0.025 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.59 on 47 degrees of freedom
## Multiple R-squared: 0.39, Adjusted R-squared: 0.364
## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896
```

Often easier to scale then fit.

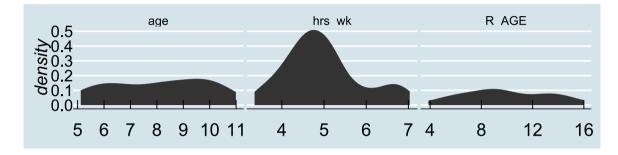
```
reading <- reading %>%
  mutate(
    agemonthC = (age - 8) \times 12,
    hrs_wkC = hrs_wk - mean(hrs_wk)
  )
mod.mb2 <- lm(R AGE ~ agemonthC + hrs wkC, data=reading)
summary(mod.mb2)
## Residuals:
            1Q Median
##
     Min
                          3Q Max
## -4.385 -2.251 0.326 2.395 3.201
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 9.8659
                          0.3665 26.92 < 2e-16 ***
## agemonthC 0.0782
                          0.0172 4.55 0.000038 ***
## hrs_wkC
           0.9636
                          0.4176
                                 2.31 0.025 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.59 on 47 degrees of freedom
## Multiple R-squared: 0.39, Adjusted R-squared: 0.364
## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896
```

Which Has a Bigger Effect?

- in our two-predictor model, is age more important than practise? Or vice-versa?
- hard to tell because the predictors are in different *units*

##							
##		Estimate	Std.	Error	t value	Pr(> t)	
##	(Intercept)	-2.423		2.472	-0.98	0.332	
	age	0.938		0.206	4.55	0.000038	***
##	hrs_wk	0.964		0.418	2.31	0.025	*
##	• • •						

• how do we compare effects of a year of age to those of an hour per week of practise?



• *if* the predictors and outcome are very roughly normally distributed...

• we can calculate *z*-scores by subtracting the mean and dividing by the standard deviation

$$z_i = rac{x_i - ar{x}}{\sigma_x}$$

- in R, the scale() function calculates z-scores
- in R, you don't need to create new columns!
 - also don't need to use I () because no ambiguity (though you can use it if you want)

mod.ms <- lm(scale(R_AGE) ~ scale(age) + scale(hrs_wk), data=reading)</pre>

- in R, the scale() function calculates z-scores
- in R, you don't need to create new columns!
 - also don't need to use I () because no ambiguity (though you can use it if you want)

mod.ms <- lm(scale(R_AGE) ~ scale(age) + scale(hrs_wk), data=reading)</pre>

- the variables are now all in terms of standard deviations from the mean
- at the *intercept*, age is the mean of age and hrs_wk is the mean of hrs_wk
- slopes: "how many standard deviations does R_AGE change for a one standard deviation change in the predictor?"

summary(mod.ms)

```
## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.41e-16 1.13e-01 0.00 1.000
## scale(age) 5.25e-01 1.15e-01 4.55 0.000038 ***
## scale(hrs_wk) 2.66e-01 1.15e-01 2.31 0.025 *
## ...
```

- R_AGE changes 0.52 sds for a 1-sd change in age, and 0.27 sds for a 1-sd change in hrs_wk
- reasonable conclusion might be that age has a greater effect on reading age than does practice

summary(mod.ms)

```
## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.41e-16 1.13e-01 0.00 1.000
## scale(age) 5.25e-01 1.15e-01 4.55 0.000038 ***
## scale(hrs_wk) 2.66e-01 1.15e-01 2.31 0.025 *
## ...
```

- R_AGE changes 0.52 sds for a 1-sd change in age, and 0.27 sds for a 1-sd change in hrs_wk
- reasonable conclusion might be that age has a greater effect on reading age than does practice
- model fit doesn't change with standardisation

```
## ...
## Multiple R-squared: 0.39, Adjusted R-squared: 0.364
## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896
```

Standardisation pre-fit

• Using scale() inside the lm() is just the same as adjusting the variable prior to fitting the model

```
reading <- reading %>%
  mutate(
    zR_AGE = (R_AGE - mean(R_AGE)) / sd(R_AGE),
    zage = (age - mean(age))/sd(age),
    zhrs_wk = scale(hrs_wk)
  )
mod.ms2 <- lm(zR_AGE ~ zage + zhrs_wk, data=reading)
summary(mod.ms2)</pre>
```

...
Estimate Std. Error t value Pr(>|t|)
(Intercept) -1.41e-16 1.13e-01 0.00 1.000
zage 5.25e-01 1.15e-01 4.55 0.000038 ***
zhrs_wk 2.66e-01 1.15e-01 2.31 0.025 *
...

Standardisation Post-Hoc

- we can convert "raw" model coefficients b to standardised coefficients β without re-running the regression]
- for predictor *x* of outcome *y*:

 $eta_x = b_x \cdot rac{\sigma_x}{\sigma_y}$

• or there are functions to do it for you

library (lsr)	<pre>library(lm.beta) summary(lm.beta(mod.m))</pre>
standardCoefs(mod.m) ## b beta ## age 0.9378 0.5250 ## hrs_wk 0.9636 0.2662	<pre>## Coefficients: ## Estimate Standardized Std. Error t value Pr(> t) ## (Intercept) -2.423 NA 2.472 -0.98 0.332 ## age 0.938 0.525 0.206 4.55 0.000038 *** ## hrs_wk 0.964 0.266 0.418 2.31 0.025 *</pre>

End of Part 1

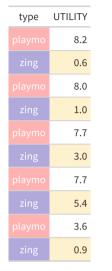
Part 2

Categorical Predictors

Playmobil vs. SuperZings

- some important pretesting went into these lectures
- every individual figure rated for "usefulness" in explaining stats
- how do we decide which to use?

Playmobil vs. SuperZings



- some important pretesting went into these lectures
- every individual figure rated for "usefulness" in explaining stats
- how do we decide which to use?

Playmobil vs. SuperZings

type	UTILITY
playmo	8.2
zing	0.6
playmo	8.0
zing	1.0
playmo	7.7
zing	3.0
playmo	7.7
zing	5.4
playmo	3.6
zing	0.9

• we already know one way to answer this

The Only Equation You'll Ever Need

• which toys are the most useful?

 $outcome_i = (model)_i + error_i$

 $ext{utility}_i = (ext{some function of type})_i + \epsilon_i$

- we need to represent type as a number
- the simplest way of doing this is to use 0 or 1

Quantifying a Nominal Predictor

```
toys <- toys %>%
  mutate(is_playmo =
           ifelse(type=="playmo",1,0))
toys
## # A tibble: 10 × 3
     type
           UTILITY is_playmo
##
     <fct>
              <dbl>
                        <dbl>
##
##
   1 playmo
                8.2
                           1
   2 zing
                0.6
                            0
##
  3 playmo
                8
##
                           1
  4 zing
                1
                            0
##
## 5 playmo
               7.7
                           1
  6 zing
##
                3
                           0
## 7 playmo
               7.7
                           1
## 8 zing
                5.4
                           0
## 9 playmo
               3.6
                           1
```

0

10 zing

0.9

Quantifying a Nominal Predictor

```
## # A tibble: 10 × 3
            UTILITY is_playmo
     type
##
     <fct>
                        <dbl>
              <dbl>
##
   1 playmo
                8.2
##
                            1
   2 zing
                0.6
##
                            0
   3 playmo
                8
                            1
##
   4 zing
                1
                            0
##
                7.7
   5 playmo
                            1
##
##
   6 zing
                3
                            0
## 7 playmo
                7.7
                            1
## 8 zing
                5.4
                            0
## 9 playmo
                3.6
                            1
## 10 zing
                0.9
                            0
```

• this maps to a linear model

 $ext{utility}_i = b_0 + b_1 \cdot ext{is_playmo} + \epsilon_i$

- utility for SuperZings is intercept
- "change due to playmo-ness" is slope

Linear Model Using is_playmo

mod1 <- lm(UTILITY~is_playmo,data=toys)
summary(mod1)</pre>

Call: ## lm(formula = UTILITY ~ is_playmo, data = toys) ## ## Residuals: ## Min 10 Median 30 Мах ## -3.440 -1.255 0.660 0.925 3.220 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 2.180 0.888 2.46 0.0396 * ## is_playmo 4.860 1.256 3.87 0.0047 ** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.99 on 8 degrees of freedom ## Multiple R-squared: 0.652, Adjusted R-squared: 0.608 ## F-statistic: 15 on 1 and 8 DF, p-value: 0.00474

Let R Do the Work

contrasts(toys\$type)

zing ## playmo 0 ## zing 1

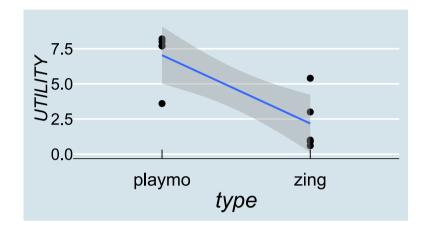
- already built-in to factors
- NB the first value will be the default intercept (because $b_n = 0$ for that value)
 - can change this using the relevel() function (or tidyverse fct_relevel())
- as long as we have a *factor*, can just use lm() with that column

Linear Model Using type

mod2 <- lm(UTILITY~type, data=toys)
summary(mod2)</pre>

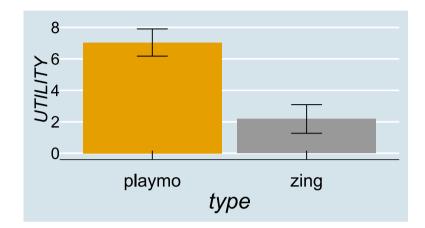
Call: ## lm(formula = UTILITY ~ type, data = toys) ## ## Residuals: ## Min 10 Median 30 Мах ## -3.440 -1.255 0.660 0.925 3.220 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 7.040 0.888 7.93 0.000047 *** ## typezing -4.860 1.256 -3.87 0.0047 ** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.99 on 8 degrees of freedom ## Multiple R-squared: 0.652, Adjusted R-squared: 0.608 ## F-statistic: 15 on 1 and 8 DF, p-value: 0.00474

Graphically



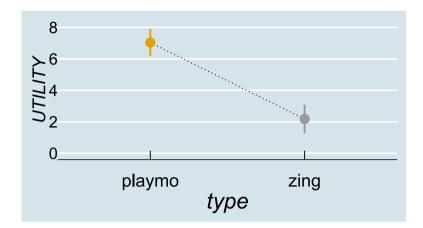
- shows "what the model is doing", but isn't a very good presentation
- the line suggests you can make predictions for types between *playmo* and *zing*

Graphically



• error bars represent one standard error of the mean

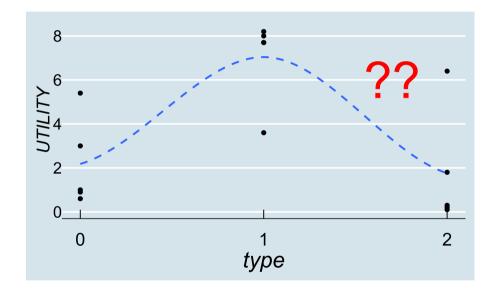
Graphically



• error bars represent one standard error of the mean

What About Lego Figures?

- we now have three groups
- can't label them c (0, 1, 2) because that would express a linear relationship



Independent Effects

- "change due to lego-ness" is *independent* of change due to anything else
- solution: add another predictor

```
toys <- toys %>% mutate(
    is_playmo = ifelse(type=="playmo",1,0),
    is_lego = ifelse(type=="lego",1,0)
)
head(toys)
```

##	#	A tibb	le: 6 × 4	1	
##		type	UTILITY	is_playmo	is_lego
##		<fct></fct>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>
##	1	zing	0.6	Θ	Θ
##	2	playmo	8.2	1	Θ
##	3	lego	0.3	Θ	1
##	4	zing	1	Θ	Θ
##	5	playmo	8	1	Θ
##	6	lego	1.8	Θ	1

Three-Level Predictor: Two Coefficients

type	UTILITY	is_playmo	is_lego
zing	0.6	0	0
playmo	8.2	1	0
lego	0.3	0	1
zing	1.0	0	0
playmo	8.0	1	0
lego	1.8	0	1

 $\mathbf{UTILITY}_i = \mathbf{b}_0 + b_1 \cdot \mathrm{is_playmo}_i + b_2 \cdot \mathrm{is_lego}_i + \boldsymbol{\epsilon}_i$

 $\mathbf{UTILITY}_i = \mathbf{b}_0 + b_1 \cdot \mathbf{0} + b_2 \cdot \mathbf{0} + \boldsymbol{\epsilon}_i$

"utility of a zing"

Three-Level Predictor: Two Coefficients

type	UTILITY	is_playmo	is_lego		
zing	0.6	0	0		
playmo	8.2	1	0		
lego	0.3	0	1		
zing	1.0	0	0		
playmo	8.0	1	0		
lego	1.8	0	1		

 $\text{UTILITY}_i = b_0 + b_1 \cdot \text{is_playmo}_i + b_2 \cdot \text{is_lego}_i + \epsilon_i$

 $\text{UTILITY}_i = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot \boldsymbol{1} + \boldsymbol{b_2} \cdot \boldsymbol{0} + \boldsymbol{\epsilon_i}$

"change in utility from a zing due to being a playmo"

Three-Level Predictor: Two Coefficients

type	UTILITY	is_playmo	is_lego
zing	0.6	0	0
playmo	8.2	1	0
lego	0.3	0	1
zing	1.0	0	0
playmo	8.0	1	0
lego	1.8	0	1

 $UTILITY_i = b_0 + b_1 \cdot is_playmo_i + b_2 \cdot is_lego_i + \epsilon_i$

 $\text{UTILITY}_i = \mathbf{b_0} + b_1 \cdot \mathbf{0} + \mathbf{b_2} \cdot \mathbf{1} + \epsilon_i$

"change in utility from a zing due to being a lego"

R Has Our Backs

- this is the *default* contrast coding in R
- known as treatment (or dummy) contrasts

contrasts(toys\$type)

##		playmo	lego
##	zing	Θ	Θ
##	playmo	1	0
##	lego	Θ	1

R Has Our Backs

- this is the *default* contrast coding in R
- known as treatment (or dummy) contrasts

contrasts(toys\$type)

##		playmo	lego
##	zing	Θ	0
##	playmo	1	0
##	lego	Θ	1

a subtle difference

core R: alphabetical
contrasts(factor(toys\$type))
contrasts(as.factor(toys\$type))

##		playmo	zing	
##	lego	Θ	0	
##	playmo	1	Θ	
##	zing	Θ	1	

tidyverse: order of mention
contrasts(as_factor(toys\$type))

##		playmo	lego	
##	zing	0	0	
##	playmo	1	Θ	
##	lego	Θ	1	

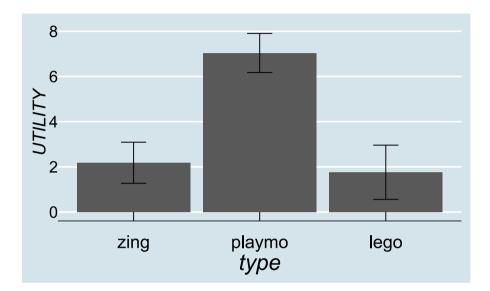
A Linear Model

mod <- lm(UTILITY ~ type, data=toys)
summary(mod)</pre>

Call: ## lm(formula = UTILITY ~ type, data = toys) ## ## Residuals: ## Min 10 Median 30 Мах -3.44 -1.51 0.04 0.89 4.64 ## ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 2.18 1.00 2.17 0.051 . ## typeplaymo 4.86 1.42 3.43 0.005 ** -0.42 1.42 -0.30 ## typelego 0.772 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.24 on 12 degrees of freedom ## Multiple R-squared: 0.588, Adjusted R-squared: 0.519 ## F-statistic: 8.56 on 2 and 12 DF, p-value: 0.0049

gd <- toys %>% group_by(type) %>% summarise(mean_se(UTILITY)) gd ## # A tibble: 3 × 4 type y ymin ymax ## ## <fct> <dbl> <dbl> <dbl> ## 1 zing 2.18 1.27 3.09 ## 2 playmo 7.04 6.17 7.91 ## 3 lego 1.76 0.559 2.96 gd %>% ggplot(aes(x=type,y=y, ymin=ymin,ymax=ymax)) + geom_bar(stat="identity") +

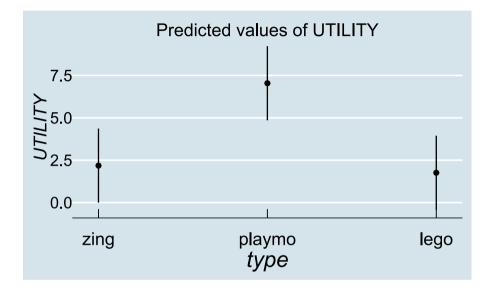
geom_errorbar(width=.2) +
ylab("UTILITY")



mod <- lm(UTILITY ~ type, data=toys)</pre>

library(sjPlot)
plot_model(mod, type = "eff")

\$type



Contrast Coding

- there may be a different contrast coding which better suits our research interests
- for a predictor with g levels (or "groups") there are g 1 possible contrasts
- these can be anything you like (values don't have to be zero or one): there are a few built in to R
- usefulness depends on your research question
- contrasts act like "tests of differences of interest" once your model has been fit
- model fit is not affected by the choice of contrasts¹

End of Part 2

Part 3

Interactions

Back to Reading

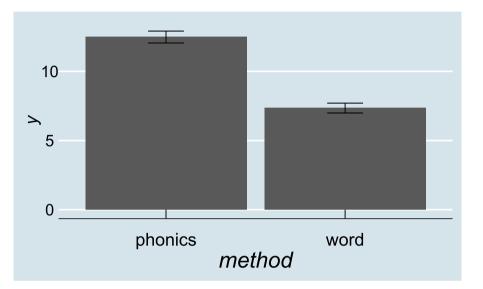
_	age	hrs_wk	method	R_AGE
	10.115	4.971	phonics	14.272
	9.940	4.677	phonics	13.692
	6.060	4.619	phonics	10.353
	9.269	4.894	phonics	12.744
	10.991	5.035	phonics	15.353
	6.535	5.272	word	5.798
	8.150	6.871	word	8.691
	7.941	4.053	word	6.988
	8.233	5.474	word	8.713
	6.219	4.038	word	5.908

We Know Enough to Fit a Linear Model

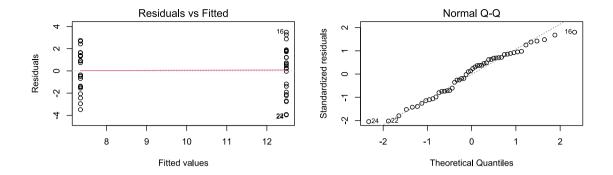
mod3 <- lm(R_AGE~method,data=reading)
summary(mod3)</pre>

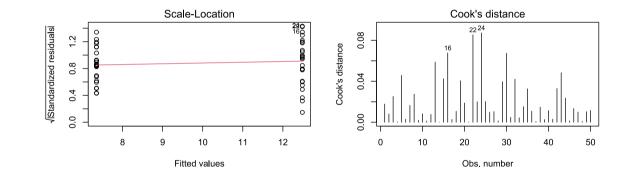
Call: ## lm(formula = R_AGE ~ method, data = reading) ## ## Residuals: ## Min 10 Median 30 Мах -3.96 -1.44 0.36 1.39 3.49 ## ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 12.485 0.395 31.59 < 2e-16 *** ## methodword -5.135 0.559 -9.19 3.8e-12 *** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.98 on 48 degrees of freedom ## Multiple R-squared: 0.637, Adjusted R-squared: 0.63 ## F-statistic: 84.4 on 1 and 48 DF, p-value: 3.76e-12

We Know Enough to Draw a Graph



• we also know enough to run model diagnostics





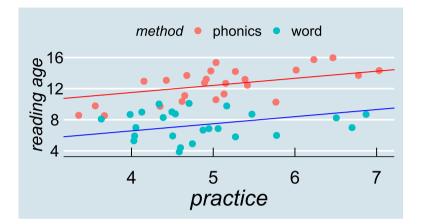
Adding Predictors

- we also know that hrs_wk affects reading age
- we can build a multiple regression, and inspect the coefficients

mod.m2 <- lm(R_AGE ~ hrs_wk + method,data=reading)
summary(mod.m2)</pre>

... Estimate Std. Error t value Pr(>|t|)## ## (Intercept) 7.843 1.524 5.15 5.1e-06 *** ## hrs wk 0.914 0.291 3.14 0.0029 ** ## methodword -4.932 0.518 -9.53 1.5e-12 *** ## ...

Graphically



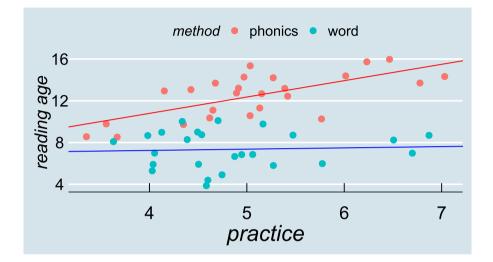
- note that according to this model the lines are parallel
- an hour of practice has *exactly the same* effect, however you're taught

Different Effects for Different Methods

```
mod.m3 <- lm(R_AGE ~ hrs_wk + method + hrs_wk:method,data=reading)
summary(mod.m3)</pre>
```

```
##
## Call:
## lm(formula = R_AGE \sim hrs_wk + method + hrs_wk:method, data = reading)
##
## Residuals:
##
     Min
             10 Median
                           30
                                 Мах
## -3.449 -1.377 -0.092 1.428 2.936
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       4.528
                               1.916
                                          2.36 0.02238 *
## hrs_wk
                       1.567
                                  0.371
                                         4.22 0.00011 ***
## methodword
                       2.228
                                 2.780
                                         0.80 0.42697
## hrs_wk:methodword -1.445
                                  0.552 -2.62 0.01199 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.71 on 46 degrees of freedom
## Multiple R-squared: 0.739, Adjusted R-squared: 0.722
## F-statistic: 43.4 on 3 and 46 DF, p-value: 1.81e-13
```

Different Effects for Different Methods



Interaction is Just Multiplication

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {\color{black} b_3 x_{1i} x_{2i}}$

 $\widehat{\text{R_AGE}} = b_0 + b_1 \cdot \text{hrs_wk} + b_2 \cdot \text{word} + b_3 \cdot \text{hrs_wk} \cdot \text{word}$

• when word = 0:

 $\widehat{\mathbf{R}}_{\mathbf{A}} \widehat{\mathbf{G}} \mathbf{E} = b_0 + b_1 \cdot \mathbf{hrs}_{\mathbf{W}} \mathbf{k} + b_2 \cdot \mathbf{0} + b_3 \cdot \mathbf{hrs}_{\mathbf{W}} \mathbf{k} \cdot \mathbf{0}$

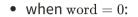
• when word = 1:

 $\widehat{\text{R}_A\text{G}\text{E}} = b_0 + b_1 \cdot \text{hrs}_\text{wk} + b_2 \cdot 1 + b_3 \cdot \text{hrs}_\text{wk} \cdot 1$

Interaction is Just Multiplication

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {\color{black} b_3 x_{1i} x_{2i}}$

 $\widehat{\mathrm{R_AGE}} = 4.53 + 1.57 \cdot \mathrm{hrs_wk} + 2.23 \cdot \mathrm{word} + -1.44 \cdot \mathrm{hrs_wk} \cdot \mathrm{word}$



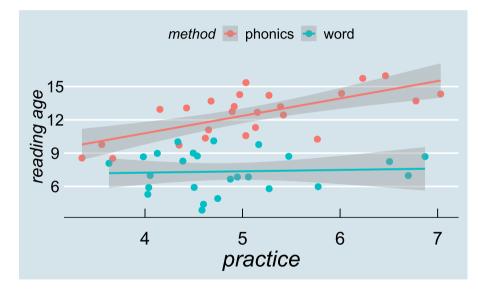
 $\widehat{R_AGE} = 4.53 + 1.57 \cdot hrs_wk + 2.23 \cdot 0 + -1.44 \cdot hrs_wk \cdot 0$

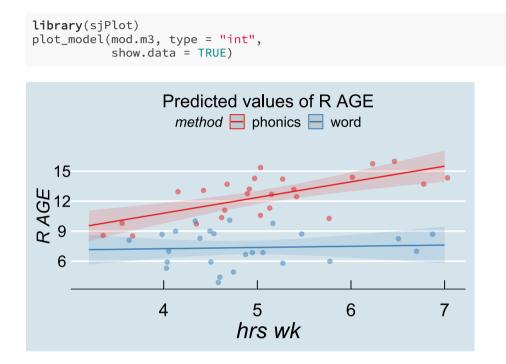
• when word = 1:

 $\widehat{\mathrm{R}_\mathrm{AGE}} = 4.53 + 1.57 \cdot \mathrm{hrs}_\mathrm{wk} + 2.23 \cdot 1 + -1.44 \cdot \mathrm{hrs}_\mathrm{wk} \cdot 1$

Nice Graphs

reading %>% ggplot(
 aes(x=hrs_wk,y=R_AGE,colour=method)) +
 xlab("practice") +
 ylab("reading age") +
 geom_point(size=3) +
 geom_smooth(method="lm")





Interaction Really Is Just Multiplication

• in our dataset it's also possible that age and practice interact

"effect of practice is not constant across ages"

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {\color{black} b_3 x_{1i} x_{2i}}$

mod.m4 <- lm(R_AGE ~ age + hrs_wk + age:hrs_wk, data=reading)</pre>

Interaction Really Is Just Multiplication

• in our dataset it's also possible that age and practice interact

"effect of practice is not constant across ages"

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {f b_3 x_{1i} x_{2i}}$

mod.m4 <- lm(R_AGE ~ age + hrs_wk + age:hrs_wk, data=reading)</pre>

a + b + a:b can also be written a * b

mod.m4 <- lm(R_AGE ~ age * hrs_wk, data=reading)</pre>

Interaction of Age and Practice

summary(mod.m4)

Call: ## lm(formula = R_AGE ~ age * hrs_wk, data = reading) ## ## Residuals: 10 Median 3Q Max ## Min ## -5.445 -1.967 -0.336 2.302 3.925 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 16.596 9.714 1.71 0.094 . ## age -1.4491.198 -1.21 0.233 ## hrs_wk -3.079 2.041 -1.51 0.138 ## age:hrs_wk 0.504 0.249 2.02 0.049 * ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.51 on 46 degrees of freedom ## Multiple R-squared: 0.44, Adjusted R-squared: 0.403

F-statistic: 12 on 3 and 46 DF, p-value: 0.00000607

Interaction Effect

##	• • •						
##		Estimate	Std.	Error	t value	Pr(> t)	
##	(Intercept)	16.596		9.714	1.71	0.094	
##	age	-1.449		1.198	-1.21	0.233	
##	hrs_wk	-3.079		2.041	-1.51	0.138	
##	age:hrs_wk	0.504		0.249	2.02	0.049	*
##	• • •						

 $\widehat{\mathrm{RAGE}}_i = b_0 + b_1 \cdot \mathrm{age}_i + b_2 \cdot \mathrm{hrs_wk}_i + b_3 \cdot \mathrm{age}_i \cdot \mathrm{hrs_wk}_i$

age 7; hrs_wk 5

age 12; hrs_wk 6

 $16.6 + -1.45 \cdot 7 + -3.08 \cdot 5 + 0.5 \cdot 7 \cdot 5$

= 8.55

 $16.6 + -1.45 \cdot 12 + -3.08 \cdot 6 + 0.5 \cdot 12 \cdot 6$

= 16.72

Significance

##	• • •						
##		Estimate	Std.	Error	t value	Pr(> t)	
##	(Intercept)	16.596		9.714	1.71	0.094	
##	age	-1.449		1.198	-1.21	0.233	
##	hrs_wk	-3.079		2.041	-1.51	0.138	
##	age:hrs_wk	0.504		0.249	2.02	0.049	*
##							

- note that not all of the effects are significant
- the model's best guess at the data ($\widehat{R_AGE}$) is expressed by the coefficients
- but we're not confident that the highlighted effects would reliably differ from zero less than 5% of the time if we repeatedly sampled from the same population
- so the *predictions* of the model are as above (and below) but our *conclusion* is only that practise is more beneficial the older a child is

Graphical Model

End

Acknowledgements

• icons by Diego Lavecchia from the Noun Project