

## Week 9: Scaling, Contrasts, Interactions

#### Univariate Statistics and Methodology using R

Department of Psychology The University of Edinburgh

# Part 1 Scaling

# Learning to Read



| age    | hrs_wk | method  | R_AGE  |
|--------|--------|---------|--------|
| 10.115 | 4.971  | phonics | 14.272 |
| 9.940  | 4.677  | phonics | 13.692 |
| 6.060  | 4.619  | phonics | 10.353 |
| 9.269  | 4.894  | phonics | 12.744 |
| 10.991 | 5.035  | phonics | 15.353 |
| 6.535  | 5.272  | word    | 5.798  |
| 8.150  | 6.871  | word    | 8.691  |
| 7.941  | 4.053  | word    | 6.988  |
| 8.233  | 5.474  | word    | 8.713  |
| 6.219  | 4.038  | word    | 5.908  |

## Learning to Read

## ... Estimate Std. Error t value Pr(>|t|) ## 2.472 -0.98 ## (Intercept) -2.423 0.332 ## age 0.938 0.206 4.55 0.000038 \*\*\* ## hrs\_wk 2.31 0.025 \* 0.964 0.418 ## ...

## Learning to Read

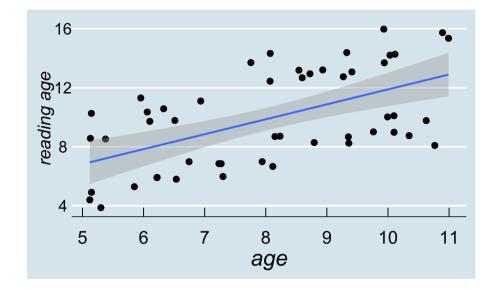
| ## | • • •       |          |      |       |         |          |     |
|----|-------------|----------|------|-------|---------|----------|-----|
| ## |             | Estimate | Std. | Error | t value | Pr(> t ) |     |
| ## | (Intercept) | -2.423   |      | 2.472 | -0.98   | 0.332    |     |
| ## | age         | 0.938    |      | 0.206 | 4.55    | 0.000038 | *** |
| ## | hrs_wk      | 0.964    |      | 0.418 | 2.31    | 0.025    | *   |
| ## |             |          |      |       |         |          |     |

- as we noted last week, the *intercept* for this model is nonsensical
  - "children aged zero who read for zero hours a week have a predicted reading age of -2.423"
- perhaps there's something we can do about this?

## **One-Predictor Model**

• let's start with a model with a *single* predictor of age<sup>1</sup>

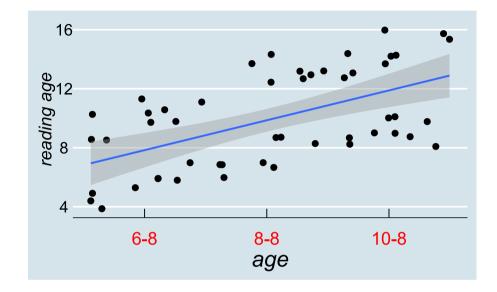
```
# model
mod2 <- lm(R_AGE ~ age,data=reading)
# figure
p <- reading %>% ggplot(aes(x=age,y=R_AGE)) +
    xlab("age") + ylab("reading age") +
    geom_point(size=3) +
    geom_smooth(method="lm")
p
```



<sup>1</sup> we know this model doesn't meet assumptions, but it will work for an illustration

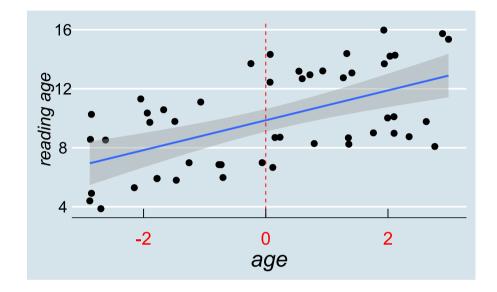
# Changing the Intercept

- actually it's fairly easy to move the intercept
- we can just pick a "useful-looking" value
- for example, we might want the intercept to tell us about students at age 8
  - this is a decision; no magic about it



# Changing the Intercept

- actually it's fairly easy to move the intercept
- we can just pick a "useful-looking" value
- for example, we might want the intercept to tell us about students at age 8
  - this is a decision; no magic about it



# A Model With a New Intercept

#### original model

## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.764 1.753 1.01 0.32
## age 1.012 0.212 4.76 0.000018 \*\*\*
## ...

#### new model

mod2b <- lm(R\_AGE ~ I(age-8), data=reading)
summary(mod2b)</pre>

## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 9.862 0.383 25.77 < 2e-16 \*\*\*
## I(age - 8) 1.012 0.212 4.76 0.000018 \*\*\*
## ...</pre>

# **Fit Remains Unchanged**

#### original model

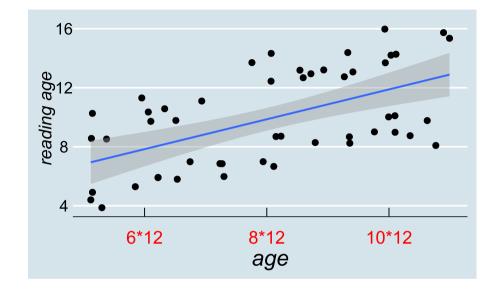
## ...
## Multiple R-squared: 0.321, Adjusted R-squared: 0.307
## F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

#### new model

## ...
## Multiple R-squared: 0.321, Adjusted R-squared: 0.307
## F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

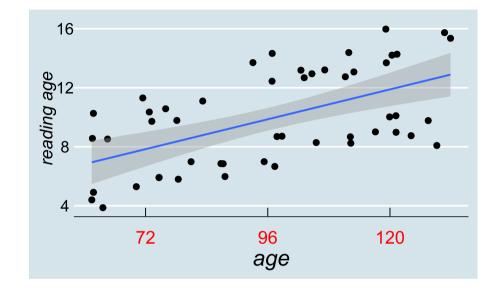
# A Model with a New Slope

- it's also easy to linearly scale the slope
- we can just pick a "useful" scale
- for example, we might want to examine the effect per month of age
  - this is a decision; no magic about it



# A Model with a New Slope

- it's also easy to linearly scale the slope
- we can just pick a "useful" scale
- for example, we might want to examine the effect per month of age
  - this is a decision; no magic about it



# A Model With a New Slope

#### original model

## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.764 1.753 1.01 0.32
## age 1.012 0.212 4.76 0.000018 \*\*\*
## ...

#### new model

mod2c <- lm(R\_AGE ~ I(age\*12), data=reading)
summary(mod2c)</pre>

## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 1.7638 1.7534 1.01 0.32
## I(age \* 12) 0.0844 0.0177 4.76 0.000018 \*\*\*
## ...

# **Fit Remains Unchanged**

#### original model

## ...
## Multiple R-squared: 0.321, Adjusted R-squared: 0.307
## F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

#### new model

## ...
## Multiple R-squared: 0.321, Adjusted R-squared: 0.307
## F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179

## We Can Get Fancy About This

```
mod.mb <- lm(R_AGE ~ I((age-8)*12) + I(hrs_wk-mean(hrs_wk)), data=reading)
summary(mod.mb)</pre>
```

```
##
## Call:
## lm(formula = R_AGE \sim I((age - 8) * 12) + I(hrs_wk - mean(hrs_wk)),
      data = reading)
##
##
## Residuals:
             1Q Median
##
     Min
                                 Мах
                           3Q
## -4.385 -2.251 0.326 2.395 3.201
##
## Coefficients:
##
                           Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                             9.8659
                                        0.3665
                                                26.92 < 2e-16 ***
## I((age - 8) * 12)
                             0.0782
                                        0.0172
                                                  4.55 0.000038 ***
## I(hrs wk - mean(hrs wk)) 0.9636
                                        0.4176
                                                  2.31
                                                         0.025 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.59 on 47 degrees of freedom
## Multiple R-squared: 0.39, Adjusted R-squared: 0.364
## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896
```

## Often easier to scale then fit.

```
reading <- reading %>%
  mutate(
    agemonthC = (age - 8) \times 12,
    hrs_wkC = hrs_wk - mean(hrs_wk)
  )
mod.mb2 <- lm(R AGE ~ agemonthC + hrs wkC, data=reading)
summary(mod.mb2)
## Residuals:
            1Q Median
##
     Min
                          3Q Max
## -4.385 -2.251 0.326 2.395 3.201
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 9.8659
                          0.3665 26.92 < 2e-16 ***
## agemonthC 0.0782
                          0.0172 4.55 0.000038 ***
## hrs_wkC
           0.9636
                          0.4176
                                 2.31 0.025 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.59 on 47 degrees of freedom
## Multiple R-squared: 0.39, Adjusted R-squared: 0.364
## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896
```

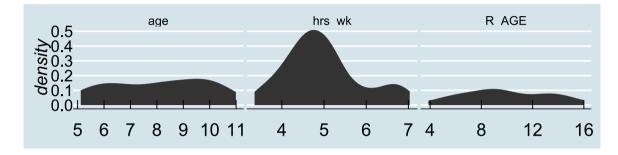
# Which Has a Bigger Effect?



- in our two-predictor model, is age more important than practise? Or vice-versa?
- hard to tell because the predictors are in different *units*

| ## |             |          |      |       |         |          |     |
|----|-------------|----------|------|-------|---------|----------|-----|
| ## |             | Estimate | Std. | Error | t value | Pr(> t ) |     |
| ## | (Intercept) | -2.423   |      | 2.472 | -0.98   | 0.332    |     |
|    | age         | 0.938    |      | 0.206 | 4.55    | 0.000038 | *** |
| ## | hrs_wk      | 0.964    |      | 0.418 | 2.31    | 0.025    | *   |
| ## | • • •       |          |      |       |         |          |     |

• how do we compare effects of a year of age to those of an hour per week of practise?



• *if* the predictors and outcome are very roughly normally distributed...

• we can calculate *z*-scores by subtracting the mean and dividing by the standard deviation

$$z_i = rac{x_i - ar{x}}{\sigma_x}$$

- in R, the scale() function calculates z-scores
- in R, you don't need to create new columns!
  - also don't need to use I () because no ambiguity (though you can use it if you want)

mod.ms <- lm(scale(R\_AGE) ~ scale(age) + scale(hrs\_wk), data=reading)</pre>

- in R, the scale() function calculates z-scores
- in R, you don't need to create new columns!
  - also don't need to use I () because no ambiguity (though you can use it if you want)

mod.ms <- lm(scale(R\_AGE) ~ scale(age) + scale(hrs\_wk), data=reading)</pre>

- the variables are now all in terms of standard deviations from the mean
- at the *intercept*, age is the mean of age and hrs\_wk is the mean of hrs\_wk
- slopes: "how many standard deviations does R\_AGE change for a one standard deviation change in the predictor?"

summary(mod.ms)

```
## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.41e-16 1.13e-01 0.00 1.000
## scale(age) 5.25e-01 1.15e-01 4.55 0.000038 ***
## scale(hrs_wk) 2.66e-01 1.15e-01 2.31 0.025 *
## ...
```

- R\_AGE changes 0.52 sds for a 1-sd change in age, and 0.27 sds for a 1-sd change in hrs\_wk
- reasonable conclusion might be that age has a greater effect on reading age than does practice

summary(mod.ms)

```
## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.41e-16 1.13e-01 0.00 1.000
## scale(age) 5.25e-01 1.15e-01 4.55 0.000038 ***
## scale(hrs_wk) 2.66e-01 1.15e-01 2.31 0.025 *
## ...
```

- R\_AGE changes 0.52 sds for a 1-sd change in age, and 0.27 sds for a 1-sd change in hrs\_wk
- reasonable conclusion might be that age has a greater effect on reading age than does practice
- model fit doesn't change with standardisation

```
## ...
## Multiple R-squared: 0.39, Adjusted R-squared: 0.364
## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896
```

# Standardisation pre-fit

• Using scale() inside the lm() is just the same as adjusting the variable prior to fitting the model

```
reading <- reading %>%
  mutate(
    zR_AGE = (R_AGE - mean(R_AGE)) / sd(R_AGE),
    zage = (age - mean(age))/sd(age),
    zhrs_wk = scale(hrs_wk)
  )
mod.ms2 <- lm(zR_AGE ~ zage + zhrs_wk, data=reading)
summary(mod.ms2)</pre>
```

## ...
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -1.41e-16 1.13e-01 0.00 1.000
## zage 5.25e-01 1.15e-01 4.55 0.000038 \*\*\*
## zhrs\_wk 2.66e-01 1.15e-01 2.31 0.025 \*
## ...

# **Standardisation Post-Hoc**

- we can convert "raw" model coefficients b to standardised coefficients  $\beta$  without re-running the regression]
- for predictor *x* of outcome *y*:

 $eta_x = b_x \cdot rac{\sigma_x}{\sigma_y}$ 

• or there are functions to do it for you

| <b>library</b> (lsr)                                                                 | <pre>library(lm.beta) summary(lm.beta(mod.m))</pre>                                                                                                                                                                                |
|--------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| standardCoefs(mod.m)<br>## b beta<br>## age 0.9378 0.5250<br>## hrs_wk 0.9636 0.2662 | <pre>## Coefficients:<br/>## Estimate Standardized Std. Error t value Pr(&gt; t )<br/>## (Intercept) -2.423 NA 2.472 -0.98 0.332<br/>## age 0.938 0.525 0.206 4.55 0.000038 ***<br/>## hrs_wk 0.964 0.266 0.418 2.31 0.025 *</pre> |

## End of Part 1

## Part 2

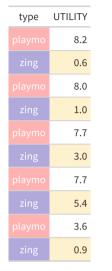
Categorical Predictors

# Playmobil vs. SuperZings



- some important pretesting went into these lectures
- every individual figure rated for "usefulness" in explaining stats
- how do we decide which to use?

# Playmobil vs. SuperZings



- some important pretesting went into these lectures
- every individual figure rated for "usefulness" in explaining stats
- how do we decide which to use?

# Playmobil vs. SuperZings

| type   | UTILITY |
|--------|---------|
| playmo | 8.2     |
| zing   | 0.6     |
| playmo | 8.0     |
| zing   | 1.0     |
| playmo | 7.7     |
| zing   | 3.0     |
| playmo | 7.7     |
| zing   | 5.4     |
| playmo | 3.6     |
| zing   | 0.9     |

• we already know one way to answer this

# The Only Equation You'll Ever Need

• which toys are the most useful?

 $outcome_i = (model)_i + error_i$ 

 $ext{utility}_i = ( ext{some function of type})_i + \epsilon_i$ 

- we need to represent type as a number
- the simplest way of doing this is to use 0 or 1

# Quantifying a Nominal Predictor

```
toys <- toys %>%
  mutate(is_playmo =
           ifelse(type=="playmo",1,0))
toys
## # A tibble: 10 × 3
     type
           UTILITY is_playmo
##
     <fct>
              <dbl>
                        <dbl>
##
##
   1 playmo
                8.2
                           1
   2 zing
                0.6
                            0
##
  3 playmo
                8
##
                           1
  4 zing
                1
                            0
##
## 5 playmo
               7.7
                           1
  6 zing
##
                3
                           0
## 7 playmo
               7.7
                           1
## 8 zing
                5.4
                           0
## 9 playmo
               3.6
                           1
```

0

## 10 zing

0.9

# Quantifying a Nominal Predictor

```
## # A tibble: 10 × 3
            UTILITY is_playmo
     type
##
     <fct>
                        <dbl>
              <dbl>
##
   1 playmo
                8.2
##
                            1
   2 zing
                0.6
##
                            0
   3 playmo
                8
                            1
##
   4 zing
                1
                            0
##
                7.7
   5 playmo
                            1
##
##
   6 zing
                3
                            0
## 7 playmo
                7.7
                            1
## 8 zing
                5.4
                            0
## 9 playmo
                3.6
                            1
## 10 zing
                0.9
                            0
```

• this maps to a linear model

 $ext{utility}_i = b_0 + b_1 \cdot ext{is_playmo} + \epsilon_i$ 

- utility for SuperZings is intercept
- "change due to playmo-ness" is slope

# Linear Model Using is\_playmo

mod1 <- lm(UTILITY~is\_playmo,data=toys)
summary(mod1)</pre>

## ## Call: ## lm(formula = UTILITY ~ is\_playmo, data = toys) ## ## Residuals: ## Min 10 Median 30 Мах ## -3.440 -1.255 0.660 0.925 3.220 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 2.180 0.888 2.46 0.0396 \* ## is\_playmo 4.860 1.256 3.87 0.0047 \*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.99 on 8 degrees of freedom ## Multiple R-squared: 0.652, Adjusted R-squared: 0.608 ## F-statistic: 15 on 1 and 8 DF, p-value: 0.00474

# Let R Do the Work

contrasts(toys\$type)

## zing ## playmo 0 ## zing 1

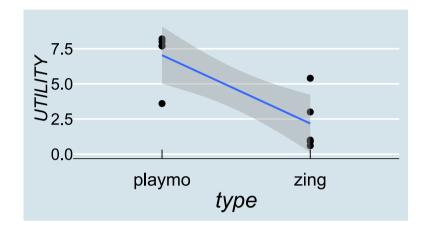
- already built-in to factors
- NB the first value will be the default intercept (because  $b_n = 0$  for that value)
  - can change this using the relevel() function (or tidyverse fct\_relevel())
- as long as we have a *factor*, can just use lm() with that column

# Linear Model Using type

mod2 <- lm(UTILITY~type, data=toys)
summary(mod2)</pre>

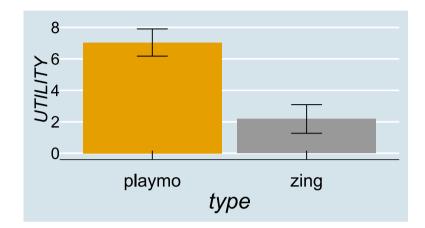
## ## Call: ## lm(formula = UTILITY ~ type, data = toys) ## ## Residuals: ## Min 10 Median 30 Мах ## -3.440 -1.255 0.660 0.925 3.220 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 7.040 0.888 7.93 0.000047 \*\*\* ## typezing -4.860 1.256 -3.87 0.0047 \*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.99 on 8 degrees of freedom ## Multiple R-squared: 0.652, Adjusted R-squared: 0.608 ## F-statistic: 15 on 1 and 8 DF, p-value: 0.00474

# Graphically



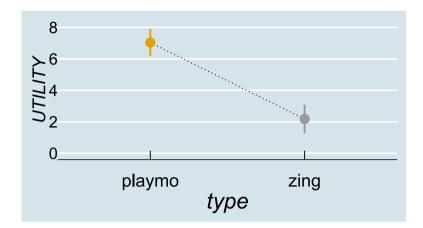
- shows "what the model is doing", but isn't a very good presentation
- the line suggests you can make predictions for types between *playmo* and *zing*

# Graphically



• error bars represent one standard error of the mean

# Graphically

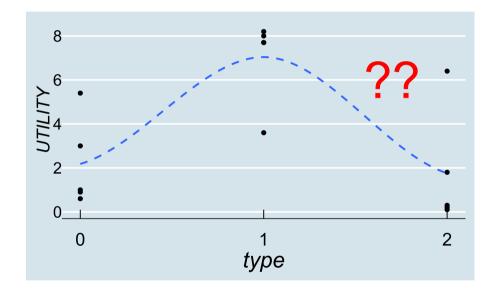


• error bars represent one standard error of the mean

### What About Lego Figures?



- we now have three groups
- can't label them c (0, 1, 2) because that would express a linear relationship



# Independent Effects

- "change due to lego-ness" is *independent* of change due to anything else
- solution: add another predictor

```
toys <- toys %>% mutate(
    is_playmo = ifelse(type=="playmo",1,0),
    is_lego = ifelse(type=="lego",1,0)
)
head(toys)
```

| ## | # | A tibb      | le: 6 × 4   | 1           |             |
|----|---|-------------|-------------|-------------|-------------|
| ## |   | type        | UTILITY     | is_playmo   | is_lego     |
| ## |   | <fct></fct> | <dbl></dbl> | <dbl></dbl> | <dbl></dbl> |
| ## | 1 | zing        | 0.6         | Θ           | Θ           |
| ## | 2 | playmo      | 8.2         | 1           | Θ           |
| ## | 3 | lego        | 0.3         | Θ           | 1           |
| ## | 4 | zing        | 1           | Θ           | Θ           |
| ## | 5 | playmo      | 8           | 1           | Θ           |
| ## | 6 | lego        | 1.8         | Θ           | 1           |

### Three-Level Predictor: Two Coefficients

| type   | UTILITY | is_playmo | is_lego |
|--------|---------|-----------|---------|
| zing   | 0.6     | 0         | 0       |
| playmo | 8.2     | 1         | 0       |
| lego   | 0.3     | 0         | 1       |
| zing   | 1.0     | 0         | 0       |
| playmo | 8.0     | 1         | 0       |
| lego   | 1.8     | 0         | 1       |

 $\mathbf{UTILITY}_i = \mathbf{b}_0 + b_1 \cdot \mathrm{is\_playmo}_i + b_2 \cdot \mathrm{is\_lego}_i + \boldsymbol{\epsilon}_i$ 

 $\mathbf{UTILITY}_i = \mathbf{b}_0 + b_1 \cdot \mathbf{0} + b_2 \cdot \mathbf{0} + \boldsymbol{\epsilon}_i$ 

"utility of a zing"

### Three-Level Predictor: Two Coefficients

| type   | UTILITY | is_playmo | is_lego |  |  |
|--------|---------|-----------|---------|--|--|
| zing   | 0.6     | 0         | 0       |  |  |
| playmo | 8.2     | 1         | 0       |  |  |
| lego   | 0.3     | 0         | 1       |  |  |
| zing   | 1.0     | 0         | 0       |  |  |
| playmo | 8.0     | 1         | 0       |  |  |
| lego   | 1.8     | 0         | 1       |  |  |

 $\text{UTILITY}_i = b_0 + b_1 \cdot \text{is\_playmo}_i + b_2 \cdot \text{is\_lego}_i + \epsilon_i$ 

 $\text{UTILITY}_i = \boldsymbol{b_0} + \boldsymbol{b_1} \cdot \boldsymbol{1} + \boldsymbol{b_2} \cdot \boldsymbol{0} + \boldsymbol{\epsilon_i}$ 

"change in utility from a zing due to being a playmo"

### Three-Level Predictor: Two Coefficients

| type   | UTILITY | is_playmo | is_lego |
|--------|---------|-----------|---------|
| zing   | 0.6     | 0         | 0       |
| playmo | 8.2     | 1         | 0       |
| lego   | 0.3     | 0         | 1       |
| zing   | 1.0     | 0         | 0       |
| playmo | 8.0     | 1         | 0       |
| lego   | 1.8     | 0         | 1       |

 $UTILITY_i = b_0 + b_1 \cdot is_playmo_i + b_2 \cdot is_lego_i + \epsilon_i$ 

 $\text{UTILITY}_i = \mathbf{b_0} + b_1 \cdot \mathbf{0} + \mathbf{b_2} \cdot \mathbf{1} + \epsilon_i$ 

"change in utility from a zing due to being a lego"

#### R Has Our Backs

- this is the *default* contrast coding in R
- known as treatment (or dummy) contrasts

contrasts(toys\$type)

| ## |        | playmo | lego |
|----|--------|--------|------|
| ## | zing   | Θ      | Θ    |
| ## | playmo | 1      | 0    |
| ## | lego   | Θ      | 1    |

#### R Has Our Backs

- this is the *default* contrast coding in R
- known as treatment (or dummy) contrasts

#### contrasts(toys\$type)

| ## |        | playmo | lego |
|----|--------|--------|------|
| ## | zing   | Θ      | 0    |
| ## | playmo | 1      | 0    |
| ## | lego   | Θ      | 1    |

#### a subtle difference



# core R: alphabetical
contrasts(factor(toys\$type))
contrasts(as.factor(toys\$type))

| ## |        | playmo | zing |  |
|----|--------|--------|------|--|
| ## | lego   | Θ      | 0    |  |
| ## | playmo | 1      | Θ    |  |
| ## | zing   | Θ      | 1    |  |

# tidyverse: order of mention
contrasts(as\_factor(toys\$type))

| ## |        | playmo | lego |  |
|----|--------|--------|------|--|
| ## | zing   | 0      | 0    |  |
| ## | playmo | 1      | Θ    |  |
| ## | lego   | Θ      | 1    |  |

#### A Linear Model

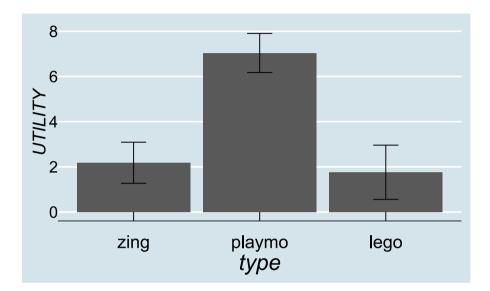
mod <- lm(UTILITY ~ type, data=toys)
summary(mod)</pre>

## ## Call: ## lm(formula = UTILITY ~ type, data = toys) ## ## Residuals: ## Min 10 Median 30 Мах -3.44 -1.51 0.04 0.89 4.64 ## ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 2.18 1.00 2.17 0.051 . ## typeplaymo 4.86 1.42 3.43 0.005 \*\* -0.42 1.42 -0.30 ## typelego 0.772 ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.24 on 12 degrees of freedom ## Multiple R-squared: 0.588, Adjusted R-squared: 0.519 ## F-statistic: 8.56 on 2 and 12 DF, p-value: 0.0049



gd <- toys %>% group\_by(type) %>% summarise(mean\_se(UTILITY)) gd ## # A tibble: 3 × 4 type y ymin ymax ## ## <fct> <dbl> <dbl> <dbl> ## 1 zing 2.18 1.27 3.09 ## 2 playmo 7.04 6.17 7.91 ## 3 lego 1.76 0.559 2.96 gd %>% ggplot(aes(x=type,y=y, ymin=ymin,ymax=ymax)) + geom\_bar(stat="identity") +

geom\_errorbar(width=.2) +
ylab("UTILITY")

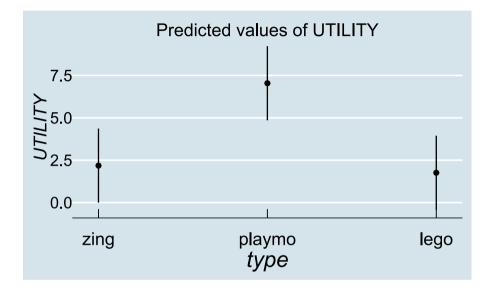




mod <- lm(UTILITY ~ type, data=toys)</pre>

library(sjPlot)
plot\_model(mod, type = "eff")

## \$type



## **Contrast Coding**

- there may be a different contrast coding which better suits our research interests
- for a predictor with g levels (or "groups") there are g 1 possible contrasts
- these can be anything you like (values don't have to be zero or one): there are a few built in to R
- usefulness depends on your research question
- contrasts act like "tests of differences of interest" once your model has been fit
- model fit is not affected by the choice of contrasts<sup>1</sup>

#### End of Part 2

# Part 3

Interactions

# Back to Reading



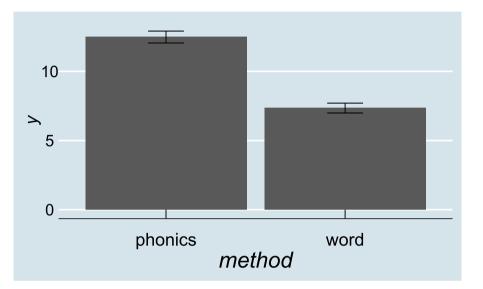
| _ | age    | hrs_wk | method  | R_AGE  |
|---|--------|--------|---------|--------|
|   | 10.115 | 4.971  | phonics | 14.272 |
|   | 9.940  | 4.677  | phonics | 13.692 |
|   | 6.060  | 4.619  | phonics | 10.353 |
|   | 9.269  | 4.894  | phonics | 12.744 |
|   | 10.991 | 5.035  | phonics | 15.353 |
|   | 6.535  | 5.272  | word    | 5.798  |
|   | 8.150  | 6.871  | word    | 8.691  |
|   | 7.941  | 4.053  | word    | 6.988  |
|   | 8.233  | 5.474  | word    | 8.713  |
|   | 6.219  | 4.038  | word    | 5.908  |
|   |        |        |         |        |

#### We Know Enough to Fit a Linear Model

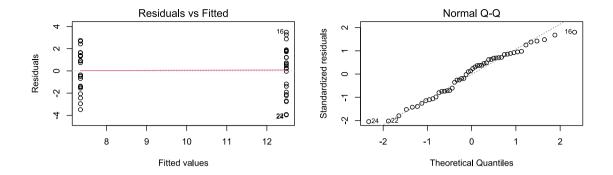
mod3 <- lm(R\_AGE~method,data=reading)
summary(mod3)</pre>

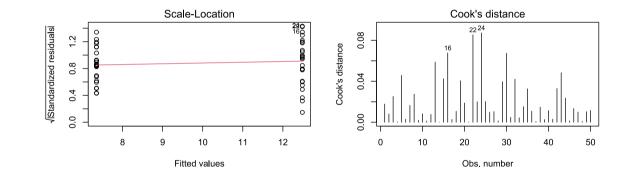
## ## Call: ## lm(formula = R\_AGE ~ method, data = reading) ## ## Residuals: ## Min 10 Median 30 Мах -3.96 -1.44 0.36 1.39 3.49 ## ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 12.485 0.395 31.59 < 2e-16 \*\*\* ## methodword -5.135 0.559 -9.19 3.8e-12 \*\*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 1.98 on 48 degrees of freedom ## Multiple R-squared: 0.637, Adjusted R-squared: 0.63 ## F-statistic: 84.4 on 1 and 48 DF, p-value: 3.76e-12

#### We Know Enough to Draw a Graph



• we also know enough to run model diagnostics





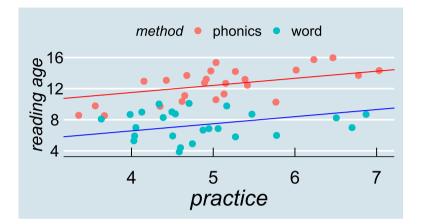
# Adding Predictors

- we also know that hrs\_wk affects reading age
- we can build a multiple regression, and inspect the coefficients

mod.m2 <- lm(R\_AGE ~ hrs\_wk + method,data=reading)
summary(mod.m2)</pre>

## ... Estimate Std. Error t value Pr(>|t|)## ## (Intercept) 7.843 1.524 5.15 5.1e-06 \*\*\* ## hrs wk 0.914 0.291 3.14 0.0029 \*\* ## methodword -4.932 0.518 -9.53 1.5e-12 \*\*\* ## ...

# Graphically



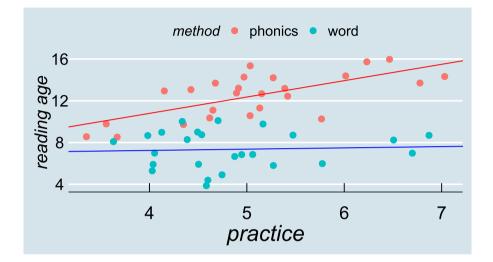
- note that according to this model the lines are parallel
- an hour of practice has *exactly the same* effect, however you're taught

# **Different Effects for Different Methods**

```
mod.m3 <- lm(R_AGE ~ hrs_wk + method + hrs_wk:method,data=reading)
summary(mod.m3)</pre>
```

```
##
## Call:
## lm(formula = R_AGE \sim hrs_wk + method + hrs_wk:method, data = reading)
##
## Residuals:
##
     Min
             10 Median
                           30
                                 Мах
## -3.449 -1.377 -0.092 1.428 2.936
##
## Coefficients:
##
                    Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                       4.528
                               1.916
                                          2.36 0.02238 *
## hrs_wk
                       1.567
                                  0.371
                                         4.22 0.00011 ***
## methodword
                       2.228
                                 2.780
                                         0.80 0.42697
## hrs_wk:methodword -1.445
                                  0.552 -2.62 0.01199 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 1.71 on 46 degrees of freedom
## Multiple R-squared: 0.739, Adjusted R-squared: 0.722
## F-statistic: 43.4 on 3 and 46 DF, p-value: 1.81e-13
```

# Different Effects for Different Methods



#### Interaction is Just Multiplication

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {\color{black} b_3 x_{1i} x_{2i}}$ 

 $\widehat{\text{R_AGE}} = b_0 + b_1 \cdot \text{hrs_wk} + b_2 \cdot \text{word} + b_3 \cdot \text{hrs_wk} \cdot \text{word}$ 

#### • when word = 0:

 $\widehat{\mathbf{R}}_{\mathbf{A}} \widehat{\mathbf{G}} \mathbf{E} = b_0 + b_1 \cdot \mathbf{hrs}_{\mathbf{W}} \mathbf{k} + b_2 \cdot \mathbf{0} + b_3 \cdot \mathbf{hrs}_{\mathbf{W}} \mathbf{k} \cdot \mathbf{0}$ 

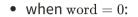
• when word = 1:

 $\widehat{\text{R}_A\text{G}\text{E}} = b_0 + b_1 \cdot \text{hrs}_\text{wk} + b_2 \cdot 1 + b_3 \cdot \text{hrs}_\text{wk} \cdot 1$ 

#### Interaction is Just Multiplication

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {\color{black} b_3 x_{1i} x_{2i}}$ 

 $\widehat{\mathrm{R\_AGE}} = 4.53 + 1.57 \cdot \mathrm{hrs\_wk} + 2.23 \cdot \mathrm{word} + -1.44 \cdot \mathrm{hrs\_wk} \cdot \mathrm{word}$ 



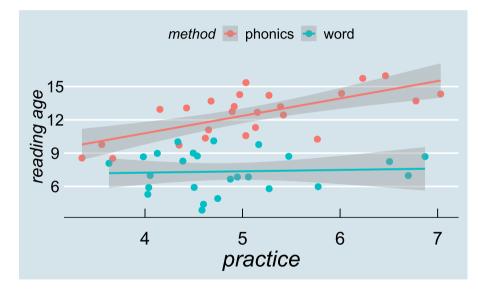
 $\widehat{R_AGE} = 4.53 + 1.57 \cdot hrs_wk + 2.23 \cdot 0 + -1.44 \cdot hrs_wk \cdot 0$ 

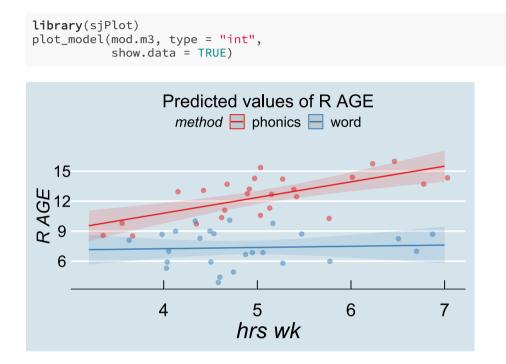
• when word = 1:

 $\widehat{\mathrm{R}\_\mathrm{AGE}} = 4.53 + 1.57 \cdot \mathrm{hrs}\_\mathrm{wk} + 2.23 \cdot 1 + -1.44 \cdot \mathrm{hrs}\_\mathrm{wk} \cdot 1$ 

#### Nice Graphs

reading %>% ggplot(
 aes(x=hrs\_wk,y=R\_AGE,colour=method)) +
 xlab("practice") +
 ylab("reading age") +
 geom\_point(size=3) +
 geom\_smooth(method="lm")





# Interaction Really Is Just Multiplication

• in our dataset it's also possible that age and practice interact

"effect of practice is not constant across ages"

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {\color{black} b_3 x_{1i} x_{2i}}$ 

mod.m4 <- lm(R\_AGE ~ age + hrs\_wk + age:hrs\_wk, data=reading)</pre>

#### Interaction Really Is Just Multiplication

• in our dataset it's also possible that age and practice interact

"effect of practice is not constant across ages"

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + {f b_3 x_{1i} x_{2i}}$ 

mod.m4 <- lm(R\_AGE ~ age + hrs\_wk + age:hrs\_wk, data=reading)</pre>

a + b + a:b can also be written a \* b

mod.m4 <- lm(R\_AGE ~ age \* hrs\_wk, data=reading)</pre>

#### Interaction of Age and Practice

summary(mod.m4)

## ## Call: ## lm(formula = R\_AGE ~ age \* hrs\_wk, data = reading) ## ## Residuals: 10 Median 3Q Max ## Min ## -5.445 -1.967 -0.336 2.302 3.925 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 16.596 9.714 1.71 0.094 . ## age -1.4491.198 -1.21 0.233 ## hrs\_wk -3.079 2.041 -1.51 0.138 ## age:hrs\_wk 0.504 0.249 2.02 0.049 \* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.51 on 46 degrees of freedom ## Multiple R-squared: 0.44, Adjusted R-squared: 0.403

## F-statistic: 12 on 3 and 46 DF, p-value: 0.00000607

#### Interaction Effect

| ## | • • •       |          |      |       |         |          |   |
|----|-------------|----------|------|-------|---------|----------|---|
| ## |             | Estimate | Std. | Error | t value | Pr(> t ) |   |
| ## | (Intercept) | 16.596   |      | 9.714 | 1.71    | 0.094    |   |
| ## | age         | -1.449   |      | 1.198 | -1.21   | 0.233    |   |
| ## | hrs_wk      | -3.079   |      | 2.041 | -1.51   | 0.138    |   |
| ## | age:hrs_wk  | 0.504    |      | 0.249 | 2.02    | 0.049    | * |
| ## | • • •       |          |      |       |         |          |   |

 $\widehat{\mathrm{RAGE}}_i = b_0 + b_1 \cdot \mathrm{age}_i + b_2 \cdot \mathrm{hrs\_wk}_i + b_3 \cdot \mathrm{age}_i \cdot \mathrm{hrs\_wk}_i$ 

age 7; hrs\_wk 5

age 12; hrs\_wk 6

 $16.6 + -1.45 \cdot 7 + -3.08 \cdot 5 + 0.5 \cdot 7 \cdot 5$ 

= 8.55

 $16.6 + -1.45 \cdot 12 + -3.08 \cdot 6 + 0.5 \cdot 12 \cdot 6$ 

= 16.72

# Significance

| ## | • • •       |          |      |       |         |          |   |
|----|-------------|----------|------|-------|---------|----------|---|
| ## |             | Estimate | Std. | Error | t value | Pr(> t ) |   |
| ## | (Intercept) | 16.596   |      | 9.714 | 1.71    | 0.094    |   |
| ## | age         | -1.449   |      | 1.198 | -1.21   | 0.233    |   |
| ## | hrs_wk      | -3.079   |      | 2.041 | -1.51   | 0.138    |   |
| ## | age:hrs_wk  | 0.504    |      | 0.249 | 2.02    | 0.049    | * |
| ## |             |          |      |       |         |          |   |

- note that not all of the effects are significant
- the model's best guess at the data (  $\widehat{R_AGE}$  ) is expressed by the coefficients
- but we're not confident that the highlighted effects would reliably differ from zero less than 5% of the time if we repeatedly sampled from the same population
- so the *predictions* of the model are as above (and below) but our *conclusion* is only that practise is more beneficial the older a child is

## **Graphical Model**



#### End

# Acknowledgements

• icons by Diego Lavecchia from the Noun Project