

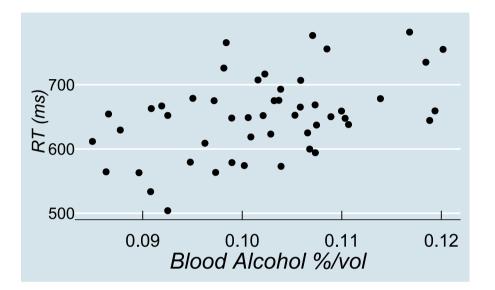
Week 8: The Linear Model (ctd)

Univariate Statistics and Methodology using R

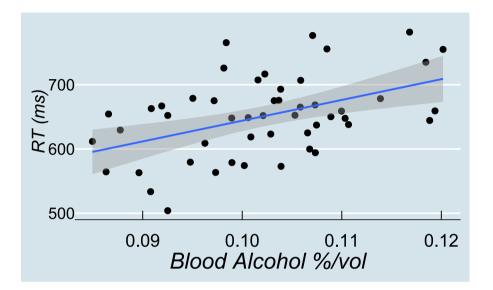
Department of Psychology The University of Edinburgh

Part 1 Quick Refresh

Some new data



Some new data



"for every extra 0.01% blood alcohol, reaction time slows down by around 32 ms"

The Model

mod <- lm(RT~BloodAlc, data=dat)
summary(mod)</pre>

Call: ## lm(formula = RT ~ BloodAlc, data = dat) ## ## Residuals: Min 10 Median ## Max 30 ## -115.92 -40.42 1.05 42.93 126.64 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 321 91 3.53 0.00093 *** ## BloodAlc 3228 3.64 0.00067 *** 888 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 55.8 on 48 degrees of freedom ## Multiple R-squared: 0.216, Adjusted R-squared: 0.2 ## F-statistic: 13.2 on 1 and 48 DF, p-value: 0.000673

Another (identical) Model

```
dat <- dat %>% mutate(BloodAlc100 = BloodAlc*100)
mod2 <- lm(RT~BloodAlc100, data=dat)
summary(mod2)
##</pre>
```

```
## Call:
## lm(formula = RT ~ BloodAlc100, data = dat)
##
## Residuals:
##
               1Q Median
      Min
                              3Q
                                     Мах
## -115.92 -40.42
                   1.05 42.93 126.64
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 321.24
                           91.05
                                    3.53 0.00093 ***
## BloodAlc100
               32.28
                            8.88
                                  3.64 0.00067 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 55.8 on 48 degrees of freedom
## Multiple R-squared: 0.216, Adjusted R-squared: 0.2
## F-statistic: 13.2 on 1 and 48 DF, p-value: 0.000673
```

Part 2

Checking Assumptions

Assumptions of Linear Models

required

• **linearity** of relationship(!)

• for the *residuals*:

- normality
- homogeneity of variance
- independence

desirable

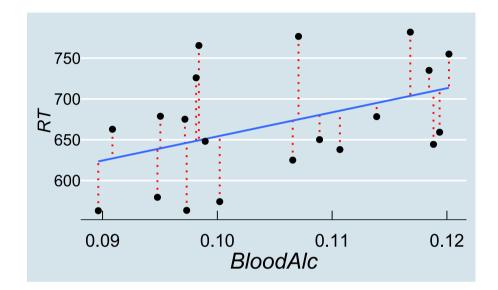
• no 'bad' (overly influential) observations

Residuals

 $y_i = b_0 + b_1 \cdot x_i + \epsilon_i$

$\epsilon \sim N(0,\sigma) ext{ independently}$

- normally distributed (mean should be \simeq zero)
- homogeneous (differences from \hat{y} shouldn't be systematically smaller or larger for different x)
- independent (residuals shouldn't influence other residuals)



At A Glance

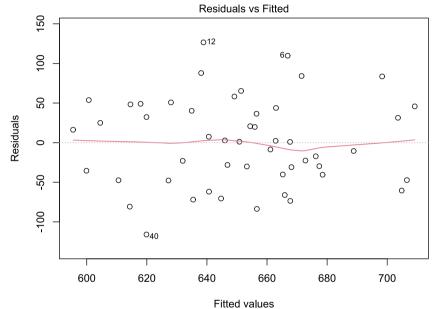
summary(mod)

Call: ## lm(formula = RT ~ BloodAlc, data = dat) ## ## Residuals: ## Min 10 Median ЗQ Max ## -115.92 -40.42 1.05 42.93 126.64 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 321 91 3.53 0.00093 *** ## BloodAlc 3228 888 3.64 0.00067 *** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 55.8 on 48 degrees of freedom ## Multiple R-squared: 0.216, Adjusted R-squared: 0.2 ## F-statistic: 13.2 on 1 and 48 DF, p-value: 0.000673

linearity

plot(mod,which=1)

- plots residuals ϵ_i against fitted values \hat{y}_i
- the 'average residual' is roughly zero across \hat{y} , so relationship is likely to be linear

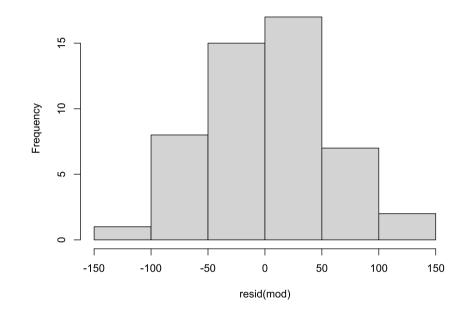


Im(RT ~ BloodAlc)

normality

hist(resid(mod))

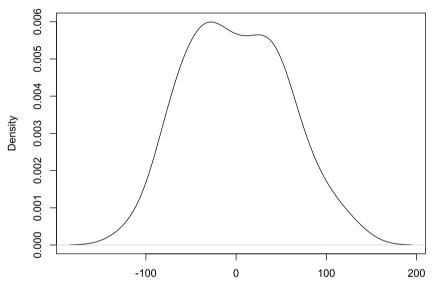
Histogram of resid(mod)



normality

plot(density(resid(mod)))

- check that residuals ϵ are approximately normally distributed
- in fact there's a better way of doing this...



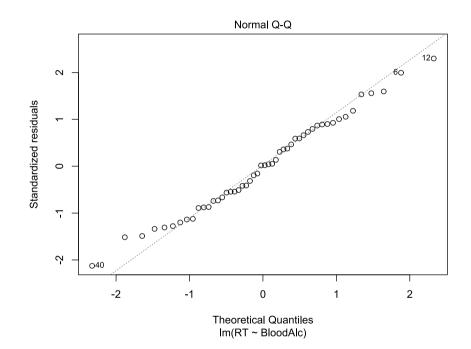
density.default(x = resid(mod))

N = 50 Bandwidth = 22.71

normality

plot(mod,which=2)

- Q-Q plot compares the residuals ϵ against a known distribution (here, normal)
- observations close to the straight line mean residuals are approximately normal
- numbered observations refer to *row numbers* in the original data, for checking



Q-Q Plots

y axis

• Our residuals, in terms of "standard deviations from the mean": standardized residual = $\frac{\text{residual}-mean(\text{residual})}{sd(\text{residual})}$

scale(resid(mod))

[1] -2.10063 -1.51541 -1.46399 -1.33279 -1.30350 [6] -1.27782 -1.19769 -1.12129 -1.09559 -0.86440 ...

Q-Q Plots

y axis

• Our residuals, in terms of "standard deviations from the mean": standardized residual = $\frac{\text{residual}-\text{mean}(\text{residual})}{\text{sd}(\text{residual})}$

scale(resid(mod))

[1] -2.10063 -1.51541 -1.46399 -1.33279 -1.30350 [6] -1.27782 -1.19769 -1.12129 -1.09559 -0.86440 ...

x axis

- we have 50 residuals.
- for a normal distribution, what values *should* 1/50th, 2/50th, 3/50th (etc) of the observations lie below?
- expressed in "standard deviations from the mean"

qnorm(c(1/50, 2/50, 3/50))

[1] -2.054 -1.751 -1.555

Q-Q Plots

y axis

• Our residuals, in terms of "standard deviations from the mean": standardized residual = $\frac{\text{residual}-\text{mean}(\text{residual})}{\text{sd}(\text{residual})}$

scale(resid(mod))

```
[1] -2.10063 -1.51541 -1.46399 -1.33279 -1.30350
[6] -1.27782 -1.19769 -1.12129 -1.09559 -0.86440
...
```

• Q-Q Plot shows these values plotted against each other

x axis

- we have 50 residuals.
- for a normal distribution, what values *should* 1/50th, 2/50th, 3/50th (etc) of the observations lie below?
- expressed in "standard deviations from the mean"

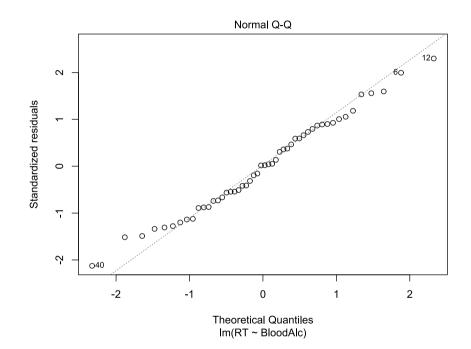
qnorm(c(1/50, 2/50, 3/50))

[1] -2.054 -1.751 -1.555

normality

plot(mod,which=2)

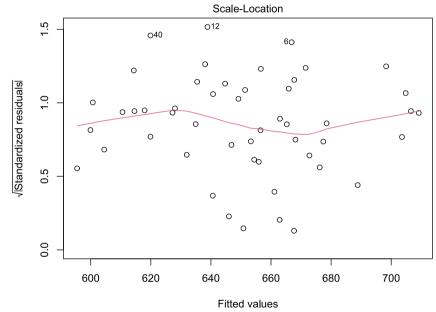
- Q-Q plot compares the residuals ϵ against a known distribution (here, normal)
- observations close to the straight line mean residuals are approximately normal
- numbered observations refer to *row numbers* in the original data, for checking



homogeneity of variance

plot(mod,which=3)

• the size of the residuals is approximately the same across values of \hat{y}



lm(RT ~ BloodAlc)

Visual vs Other Methods

- statistical ways of checking assumptions are introduced in the reading
- they tend to have limitations (for example, they're susceptible to sample size)
- nothing beats looking at plots like these (and plot(<model>) makes it easy)
- however, two things:

Visual vs Other Methods

- statistical ways of checking assumptions are introduced in the reading
- they tend to have limitations (for example, they're susceptible to sample size)
- nothing beats looking at plots like these (and plot(<model>) makes it easy)
- however, two things:

1. there are no criteria for deciding exactly when assumptions are sufficiently met

- it's a matter of experience and judgement
- 2. we need to talk about **independence** of residuals

End of Part 2

Part 3

Independence, Influence

Independence

- no easy way to check independence of residuals
- in part, because it depends on the *source* of the observations
- one determinant might be a single person being observed multiple times
- e.g., my reaction times might tend to be slower than yours \rightarrow multivariate statistics

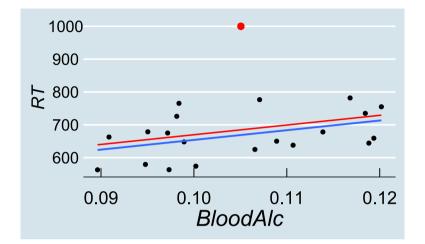
Independence

- another determinant might be *time*
- observations in a sequence might be autocorrelated
- can be checked using the Durbin-Watson Test from the car package

library(car)
dwt(mod)

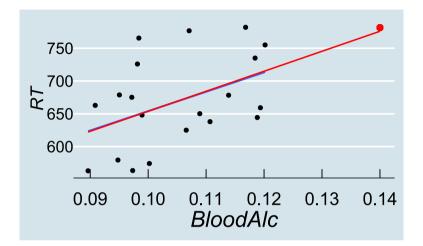
- ## lag Autocorrelation D-W Statistic p-value
- ## 1 -0.1377 2.22 0.42
- ## Alternative hypothesis: rho != 0
- shows no autocorrelation at lag 1

Influence



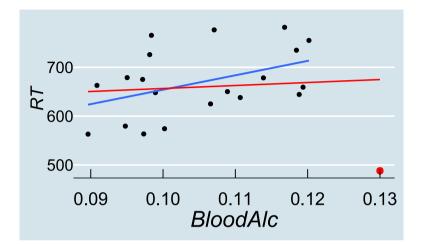
- even substantial outliers may only have small effects on the model
- here, only the intercept is affected

Influence



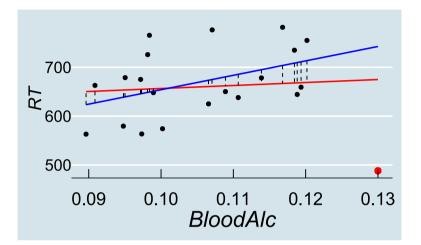
• observations with high leverage are inconsistent with other data, but may not be distorting the model

Influence



• we care about observations with high influence (outliers with high leverage)

Cook's Distance



• a standardised measure of "how much the model differs without observation *i*"



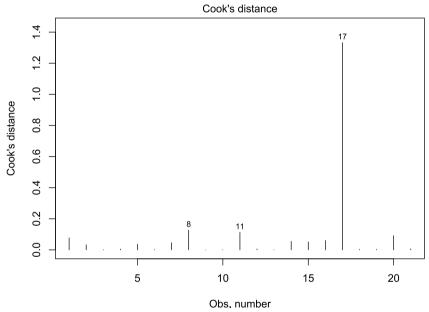
$$D_i = rac{\sum_{j=1}^n (\hat{y}_j - \hat{y}_{j(i)})^2}{(p+1) \hat{\sigma}^2}$$
 .

- \hat{y}_{j} is the *j*th fitted value
- ŷ_{j(i)} is the *j*th value from a fit which doesn't include observation *i p* is the number of regression coefficients
- $\hat{\sigma}^2$ is the estimated variance from the fit, i.e., mean squared error

Cook's Distance

plot(mod,which=4)

- observations labelled by row
- various rules of thumb, but start looking when Cook's Distance > 0.5



lm(RT ~ BloodAlc)

Learning to Read

- the Playmo School has been evaluating its reading programmes, using 50 students
- ages of students
- hours per week students spend reading of their own volition
- whether they are taught using phonics or whole-word methods
- outcome: "reading age"

NOTES FOR NEXT SLIDE

Learning to Read

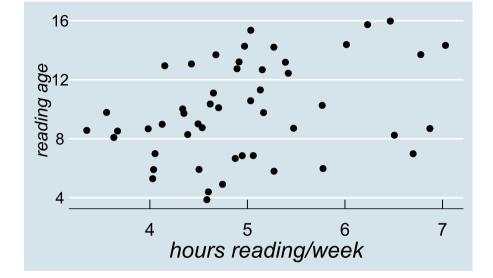
age	hrs_wk	method	R_AGE
10.115	4.971	phonics	14.272
9.940	4.677	phonics	13.692
6.060	4.619	phonics	10.353
9.269	4.894	phonics	12.744
10.991	5.035	phonics	15.353
6.535	5.272	word	5.798
8.150	6.871	word	8.691
7.941	4.053	word	6.988
8.233	5.474	word	8.713
6.219	4.038	word	5.908

Learning to Read

age	hrs_wk	method	R_AGE
10.115	4.971	phonics	14.272
9.940	4.677	phonics	13.692
6.060	4.619	phonics	10.353
9.269	4.894	phonics	12.744
10.991	5.035	phonics	15.353
6.535	5.272	word	5.798
8.150	6.871	word	8.691
7.941	4.053	word	6.988
8.233	5.474	word	8.713
6.219	4.038	word	5.908

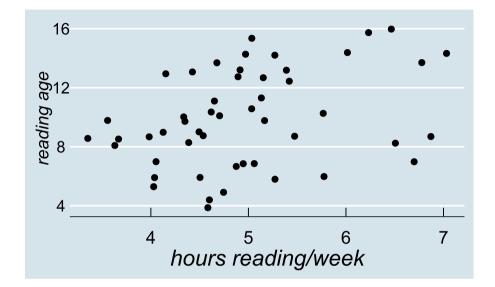
Does Practice Affect Reading Age?

p <- reading %>%
ggplot(aes(x=hrs_wk,y=R_AGE)) +
geom_point(size=3) +
ylab("reading age") +
xlab("hours reading/week")
p



Does Practice Affect Reading Age?

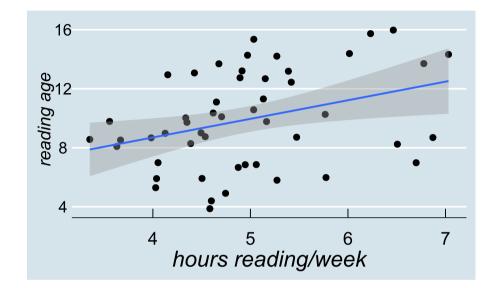
p <- reading %>%
ggplot(aes(x=hrs_wk,y=R_AGE)) +
geom_point(size=3) +
ylab("reading age") +
xlab("hours reading/week")
p



- hours per week is correlated with reading age: r = 0.3483, p = 0.0132
- we can use a linear model to say something about the effect size

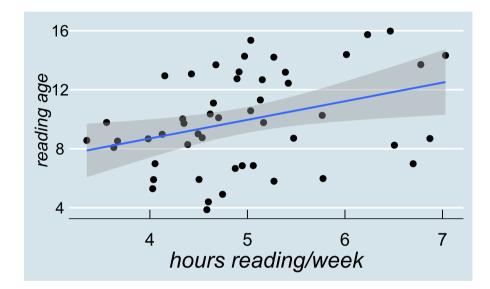
Does Practice Affect Reading Age?

p + geom_smooth(method="lm")



Does Practice Affect Reading Age?

p + geom_smooth(method="lm")



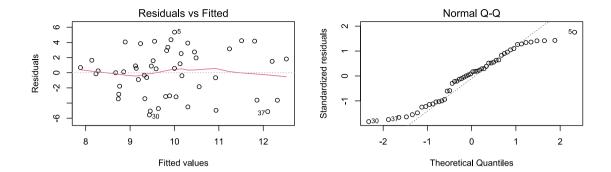
• each extra hour spent reading a week adds 1.26 years to reading age

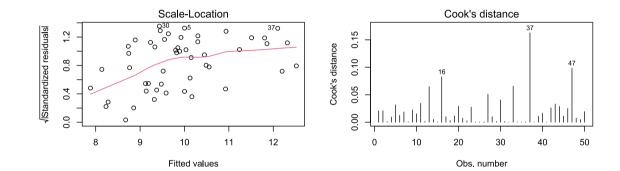
A Linear Model

mod <- lm(R_AGE ~ hrs_wk, data=reading)
summary(mod)
##</pre>

Call: ## lm(formula = R_AGE ~ hrs_wk, data = reading) ## ## Residuals: ## Min 10 Median Мах 30 ## -5.567 -2.991 0.378 2.385 5.351 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 3.65 2.47 1.48 0.146 ## hrs_wk 1.26 0.49 2.57 0.013 * ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.08 on 48 degrees of freedom ## Multiple R-squared: 0.121, Adjusted R-squared: 0.103 ## F-statistic: 6.63 on 1 and 48 DF, p-value: 0.0132

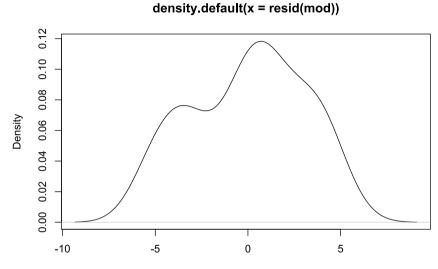
but...





Assumptions Not Met!

- it seems that the assumptions aren't met for this model
- (another demonstration on the right)
- one reason for this can be because there's still systematic structure in the residuals
- i.e., *more than one thing* which can explain the variance



N = 50 Bandwidth = 1.253

End of Part 3

Part 4

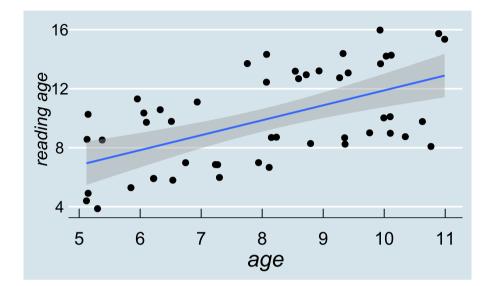
Multiple Regression

Adding Age into the Equation

- so far, have focused on effects of practice
- but presumably older children read better?

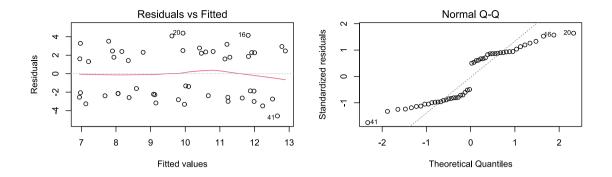
age	hrs_wk	method	R_AGE	
10.115	4.971	phonics	14.272	
9.940	4.677	phonics	13.692	
6.060	4.619	phonics	10.353	
7.941	4.053	word	6.988	
8.233	5.474	word	8.713	
6.219	4.038	word	5.908	

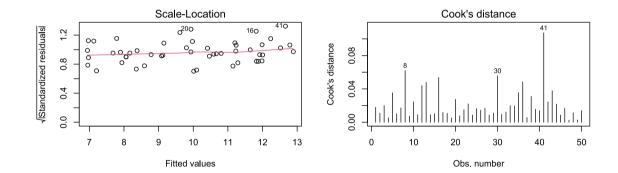
Another Model



Another Model

mod2 <- lm(R_AGE ~ age, data=reading)</pre> summary(mod2) ## ## Call: ## lm(formula = R_AGE ~ age, data = reading) ## ## Residuals: ## Min 10 Median 30 Max ## -4.577 -2.509 -0.005 2.390 4.392 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 1.764 1.753 1.01 0.32 1.012 0.212 4.76 0.000018 *** ## age ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.7 on 48 degrees of freedom ## Multiple R-squared: 0.321, Adjusted R-squared: 0.307 ## F-statistic: 22.7 on 1 and 48 DF, p-value: 0.0000179





Two Models, No Answers

- we now have two models that don't map well to assumptions
- each suggests an effect
 - one of age
 - one of hrs_wk

- if we run them independently, the chances of a type 1 error are
 - $\frac{1}{20}$ (mod, including hrs_wk)
 - $\circ \frac{1}{20}$ (mod2, including age)
- or $\frac{1}{10}$ overall

Two Models, No Answers

- we now have two models that don't map well to assumptions
- each suggests an effect
 - one of age
 - one of hrs_wk

- if we run them independently, the chances of a type 1 error are
 - $\frac{1}{20}$ (mod, including hrs_wk)
 - $\circ \frac{1}{20}$ (mod2, including age)
- or $\frac{1}{10}$ overall

we need to test multiple predictors in one linear model

Model Equations Again

 $\operatorname{outcome}_i = (\operatorname{model})_i + \operatorname{error}_i$

 $y_i = b_0 \cdot 1 + b_1 \cdot x_i + \epsilon_i$

Model Equations Again

 $egin{aligned} ext{outcome}_i &= (ext{model})_i + ext{error}_i \ & y_i &= b_0 \cdot 1 + b_1 \cdot x_i + \epsilon_i \end{aligned}$

linear model with two predictors

 $egin{aligned} y_i &= b_0 \cdot 1 + b_1 \cdot x_{1i} + b_2 \cdot x_{2i} + \epsilon_i \ \hat{y}_i &= b_0 \cdot 1 + b_1 \cdot x_{1i} + b_2 \cdot x_{2i} \end{aligned}$

Model Equations Again

 $egin{aligned} ext{outcome}_i &= (ext{model})_i + ext{error}_i \ & y_i &= b_0 \cdot 1 + b_1 \cdot x_i + \epsilon_i \end{aligned}$

linear model with two predictors

¹ we'll come back to why order can matter in a bit

Running a Multiple Regression

mod.m <- lm(R_AGE ~ age + hrs_wk, data=reading)
summary(mod.m)</pre>

Call: ## lm(formula = R_AGE ~ age + hrs_wk, data = reading) ## ## Residuals: ## Min 10 Median 30 Мах ## -4.385 -2.251 0.326 2.395 3.201 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) -2.423 2.472 -0.98 0.332 ## age 0.938 0.206 4.55 0.000038 *** ## hrs_wk 0.964 0.418 2.31 0.025 * ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.59 on 47 degrees of freedom ## Multiple R-squared: 0.39, Adjusted R-squared: 0.364 ## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896

Running a Multiple Regression

#	#					
#	# (Intercept)	-2.423	2.472	-0.98	0.332	
#	# age	0.938	0.206	4.55	0.000038	***
#	# hrs_wk	0.964	0.418	2.31	0.025	*
#	#					

- there are *independent* effects of age and practice
 - $\circ~$ reading age improves by 0.9378 for each year of age
 - reading age improves by 0.9636 for each weekly hour of practice
- note that the *intercept* (0 years old, 0 hours/week) is meaningless here

Running a Multiple Regression

... ## (Intercept) -2.423 2.472 -0.98 0.332 0.938 0.206 4.55 0.000038 *** ## age ## hrs_wk 0.964 0.418 2.31 0.025 * ## ...

- there are *independent* effects of age and practice
 - $\circ~$ reading age improves by 0.9378 for each year of age
 - reading age improves by 0.9636 for each weekly hour of practice
- note that the *intercept* (0 years old, 0 hours/week) is meaningless here
- important question: is this model better than a model based just on age?

Model Fit: R²

...
Residual standard error: 2.59 on 47 degrees of freedom
Multiple R-squared: 0.39, Adjusted R-squared: 0.364
F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896

- in multiple regression, R^2 measures the fit of the entire model
 - sum of individual *R*²s *if predictors not correlated*
- $R^2 = 0.3902$ looks better than the R^2 for mod2 (age as a predictor) of 0.3211
- but any predictor will improve R^2 (chance associations guarantee this)

```
mod2 <- lm(R_AGE ~ age, data=reading)
mod.2r <- update(mod2, ~ . + runif(50))
summary(mod.2r)</pre>
```

```
## ...
## Multiple R-squared: 0.361, Adjusted R-squared: 0.334
## ...
```

Model Fit: F

...
Residual standard error: 2.59 on 47 degrees of freedom
Multiple R-squared: 0.39, Adjusted R-squared: 0.364
F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896

• in multiple regression, F tests the whether the model overall explains more variance than we would expect by chance.

• can be phrased as a model comparison:

```
null_mod <- lm(R_AGE ~ 1, data = reading)
mod.m <- lm(R_AGE ~ age + hrs_wk, data=reading)
anova(null_mod, mod.m)</pre>
```

Analysis of Variance Table
##
Model 1: R_AGE ~ 1
Model 2: R_AGE ~ age + hrs_wk
Res.Df RSS Df Sum of Sq F Pr(>F)
1 49 517
2 47 315 2 202 15 9e-06 ***
--## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Comparing Models

• We can also use *F* ratios to compare models in terms of variance explained by each model:

 \circ Models must be "nested" - predictors of one model are a subset of predictors in the other.

• Models must be fitted to the same data.

Partitioning Variance

• Take one model, and examine variance explained by each predictor:

```
mod.f <- lm(R_AGE ~ age + hrs_wk, data=reading)
anova(mod.m)</pre>
```

Analysis of Variance Table
##
Response: R_AGE
Df Sum Sq Mean Sq F value Pr(>F)
age 1 166.0 166.0 24.75 0.0000092 ***
hrs_wk 1 35.7 35.7 5.33 0.025 *
Residuals 47 315.3 6.7
---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Order Matters!

• age then hrs_wk

Analysis of Variance Table ## ... ## Response: R_AGE ## Df Sum Sq Mean Sq F value Pr(>F) 1 166.0 166.0 24.75 0.0000092 *** ## age ## hrs_wk 1 35.7 35.7 5.33 0.025 * ## Residuals 47 315.3 6.7 ## ---

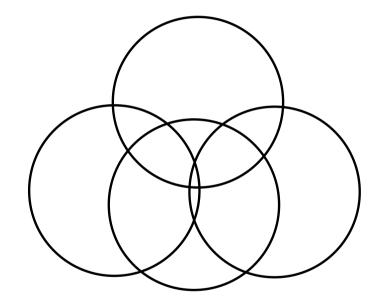
• hrs_wk then age

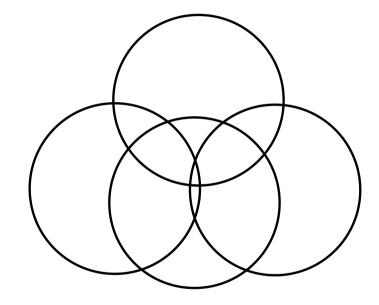
Analysis of Variance Table
...
Response: R_AGE
Df Sum Sq Mean Sq F value Pr(>F)
hrs_wk 1 62.7 62.7 9.35 0.0037 **
age 1 139.0 139.0 20.72 0.000038 ***
Residuals 47 315.3 6.7

Type 1 vs. Type 3 SS

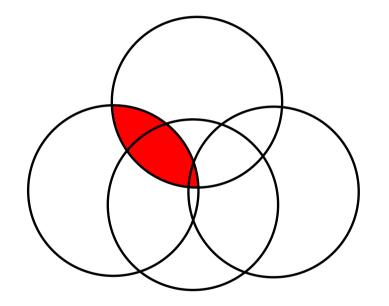
- order matters because R, by default, uses Type 1 sums of squares for anova()
 - calculate each predictor's improvement to the model *in turn*
- compare to Type 3 sums of squares
 - calculate each predictor's improvement to the model *taking all other predictors into account*
- huge debate about which is "better" (nobody likes Type 2)
- if using Type 1, predictors should be entered into the model in a theoretically-motivated order

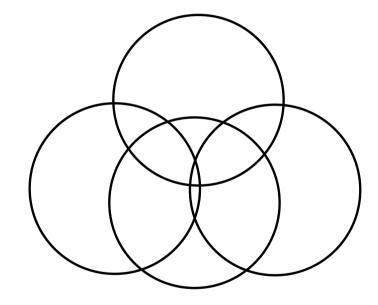
Type 1 vs. Type 3 SS



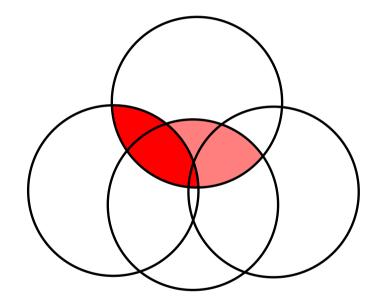


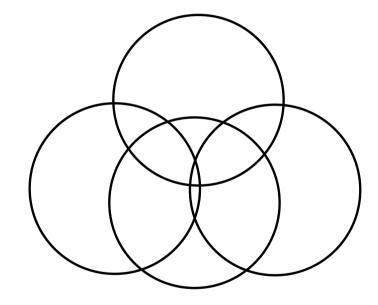
Type 1 vs. Type 3 SS



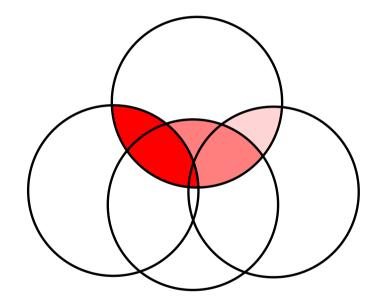


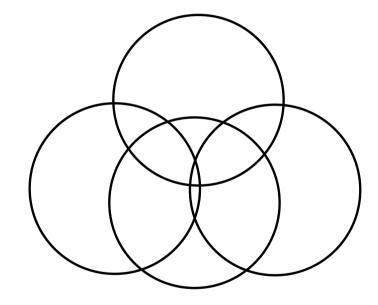
Type 1 vs. Type 3 SS



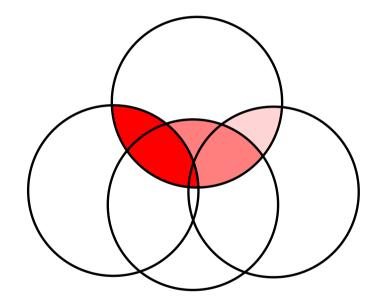


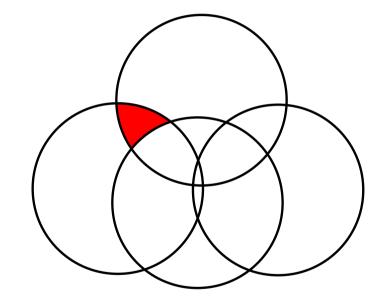
Type 1 vs. Type 3 SS



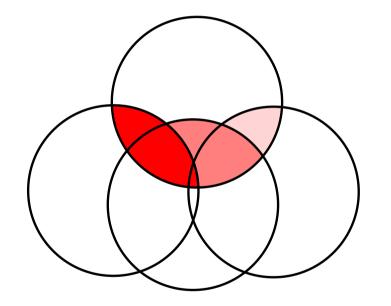


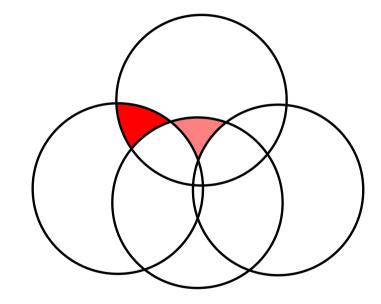
Type 1 vs. Type 3 SS



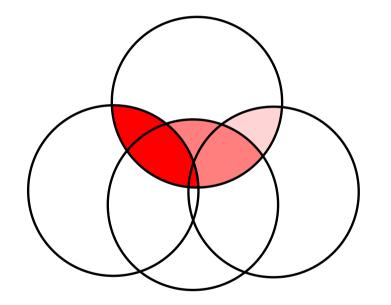


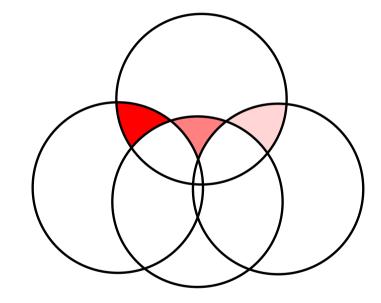
Type 1 vs. Type 3 SS





Type 1 vs. Type 3 SS





Type 1 vs. Type 3 SS

Type 1 - "Incremental" (Order Matters)

age then hrs_wk: `
anova(lm(R_AGE~age+hrs_wk,data=reading))

```
## Analysis of Variance Table
##
## Response: R_AGE
##
            Df Sum Sq Mean Sq F value
                                        Pr(>F)
            1 166.0
                       166.0 24.75 0.0000092 ***
## age
## hrs wk
          1 35.7
                         35.7
                                5.33
                                         0.025 *
## Residuals 47 315.3
                         6.7
## ---
```

hrs_wk then age: anova(lm(R_AGE~hrs_wk+age,data=reading))

```
## Analysis of Variance Table
##
## Response: R_AGE
##
            Df Sum Sq Mean Sq F value Pr(>F)
                               9.35 0.0037 **
## hrs_wk
          1 62.7
                        62.7
            1 139.0
                              20.72 0.000038 ***
## age
                       139.0
## Residuals 47 315.3
                         6.7
## ---
```

Type 3 - "Last one in"

mod.m <- lm(R_AGE~hrs_wk+age,data=reading)
drop1(mod.m, test="F")</pre>

Single term deletions ## ## Model: ## R_AGE ~ hrs_wk + age Df Sum of Sq RSS AIC F value Pr(>F) ## ## <none> 315 98.1 ## hrs wk 1 5.33 35.7 351 101.4 0.025 * ## age 1 139.0 454 114.3 20.72 0.000038 *** ## ----

So far..

What can we do with multiple regressions?

- Examine proportion of variance explained R^2
- Test whether the model improves over chance F test at the bottom of summary (model)
- Conduct comparisons between *nested* models

```
e.g. lm(y ~ x1) vs lm(y ~ x1 + x2 + x3 + x4)
using anova (model1, model2)
```

- Test the variance explained by each predictor in the model, either...
 - incrementally (in the order inputted into the model) anova (model)
 - o after accounting for all other predictors
 drop1(model, test = "F")

Two Subtly Different Questions

```
After accounting for age, does hrs_wk influence R_AGE?
```

```
mod.m <- lm(R_AGE~ age + hrs_wk, data=reading)
anova(mod.m)</pre>
```

```
## Analysis of Variance Table
##
## Response: R_AGE
##
            Df Sum Sq Mean Sq F value
                                         Pr(>F)
             1 166.0
                        166.0
                                24.75 0.0000092 ***
## age
## hrs wk
             1 35.7
                         35.7
                                 5.33
                                          0.025 *
## Residuals 47 315.3
                          6.7
## ---
```

After accounting for age, *how does* hrs_wk influence R_AGE?

mod.m <- lm(R_AGE~ age + hrs_wk, data=reading)
summary(mod.m)</pre>

... ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) -2.423 2.472 -0.98 0.332 0.938 ## age 0.206 4.55 0.000038 *** 0.964 0.418 ## hrs_wk 0.025 * 2.31 ## ---## ...

The Two-Predictor Model

mod.m <- lm(R_AGE ~ age + hrs_wk, data=reading)
summary(mod.m)</pre>

Call: ## lm(formula = R_AGE ~ age + hrs_wk, data = reading) ## ## Residuals: ## Min 10 Median 30 Мах ## -4.385 -2.251 0.326 2.395 3.201 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) -2.423 2.472 -0.98 0.332 0.206 ## age 0.938 4.55 0.000038 *** ## hrs_wk 0.964 0.418 2.31 0.025 * ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 2.59 on 47 degrees of freedom ## Multiple R-squared: 0.39, Adjusted R-squared: 0.364 ## F-statistic: 15 on 2 and 47 DF, p-value: 0.00000896

The Two-Predictor Model

End

Acknowledgements

• icons by Diego Lavecchia from the Noun Project