

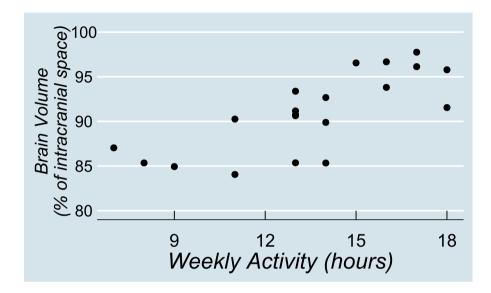
## Week 7: The Linear Model

#### Univariate Statistics and Methodology using R

Department of Psychology The University of Edinburgh

## Part 1: Correlation++

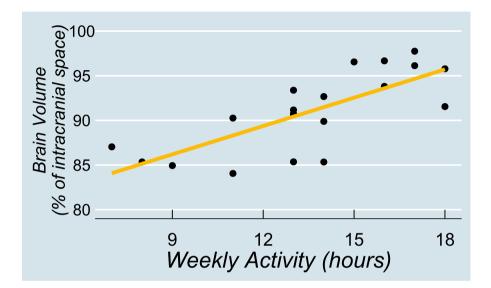
## Exercising our brains



r=0.7488, p=0.0001



## Exercising our brains (2)

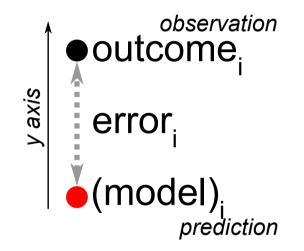


"for every extra 1 hour more weekly activity, brain volume increases by 1.06 (% of intracranial space)"



## The Only Equation You Will Ever Need

 $\overline{\mathrm{outcome}_i = (\mathrm{model})_i + \mathrm{error}_i}$ 



## The Only Equation You Will Ever Need

 $\overline{\mathrm{outcome}_i} = (\mathrm{model})_i + \mathrm{error}_i$ 

- to get any further, we need to make assumptions
- nature of the model
- nature of the errors

(linear)

(normal)

## A Linear Model

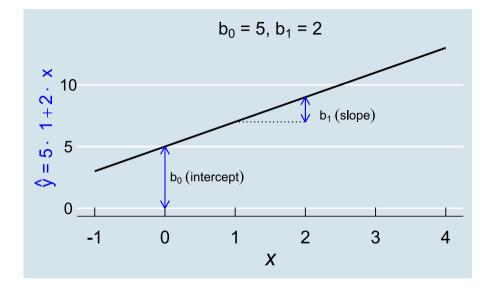
- $\operatorname{outcome}_i = (\operatorname{model})_i + \operatorname{error}_i$ 
  - $y_i = b_0 \cdot 1 + b_1 \cdot x_i + \epsilon_i$

so the linear model itself is...

$$\hat{y}_i = b_0 \cdot 1 + b_1 \cdot x_i$$
  
y ~ 1 + x

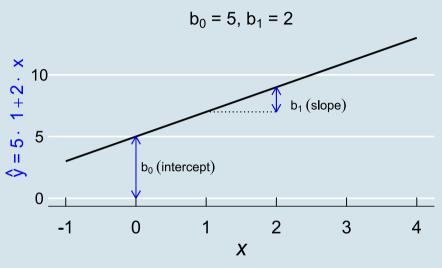
#### A Linear Model

- $outcome_i = (model)_i + error_i$ 
  - $y_i = b_0 \cdot 1 + b_1 \cdot x_i + \epsilon_i$
  - so the linear model itself is...
  - $\hat{y}_i = b_0 \cdot 1 + b_1 \cdot x_i$ y ~ 1 + x



#### A Linear Model

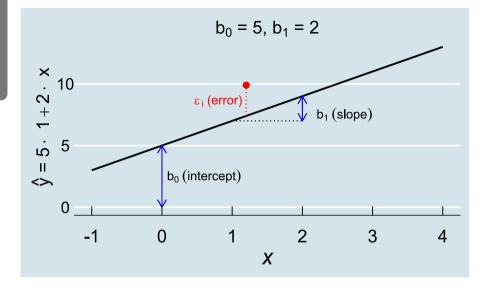
outcome<sub>i</sub> = (model)<sub>i</sub> + error<sub>i</sub>  $y_i = b_0 \cdot 1 + b_1 \cdot x_i + \epsilon_i$ so the linear model itself is...  $\hat{y}_i = b_0 \cdot 1 + b_1 \cdot x_i$   $y \sim 1 + x$   $\hat{y} = b_0 + b_1 \cdot x_i$  $y \sim X$ 



#### Take An Observation

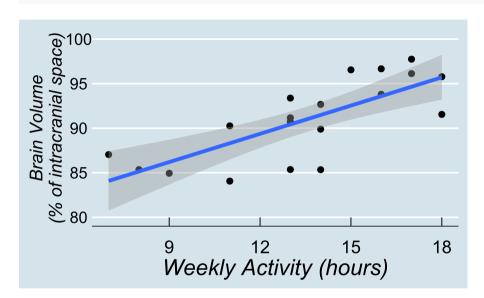
$$x_i = 1.2, y_i = 9.9$$

$${\hat y}_i = b_0 + b_1 \cdot x_i = 7.4$$
  
 $y_i = {\hat y}_i + \epsilon_i = 7.4 + 2.5$ 



## More Brain Exercises

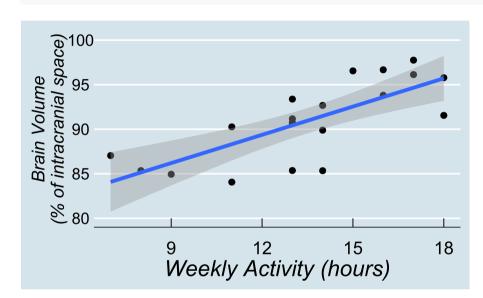
"for every extra 1 hour more weekly activity, brain volume increases by 1.06 (% of intracranial space)"



+ geom\_smooth(method="lm")

## More Brain Exercises

"for every extra 1 hour more weekly activity, brain volume increases by 1.06 (% of intracranial space)"



+ geom\_smooth(method="lm")

but how can we evaluate our model?

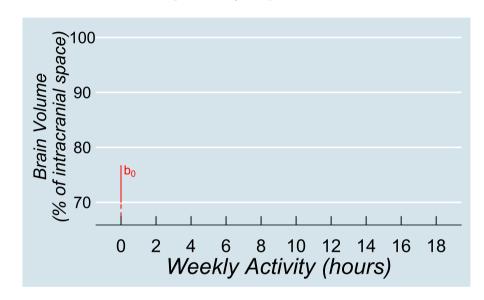
## Linear Models in R

mod <- lm(brain\_vol ~ weekly\_actv, data=dat)</pre>

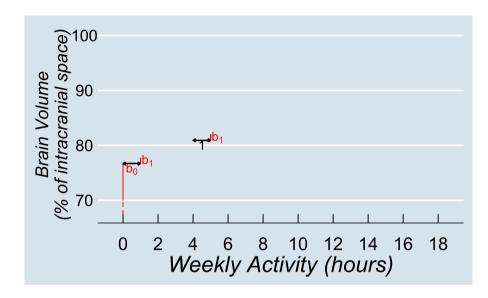
#### Linear Models in R

mod <- lm(brain\_vol ~ weekly\_actv, data=dat)
summary(mod)</pre>

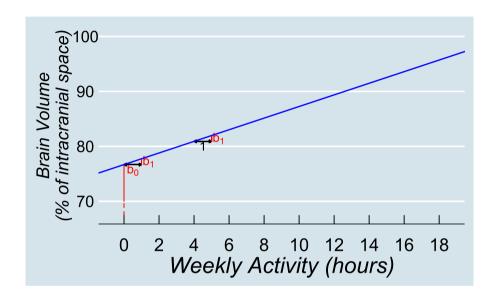
## ## Call: ## lm(formula = brain\_vol ~ weekly\_actv, data = dat) ## ## Residuals: ## Min 10 Median 30 Мах ## -6.144 -1.342 0.274 2.199 4.009 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 76.685 3.052 25.12 1.8e-15 \*\*\* ## weekly\_actv 1.057 0.221 4.79 0.00015 \*\*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.02 on 18 degrees of freedom ## Multiple R-squared: 0.561, Adjusted R-squared: 0.536 ## F-statistic: 23 on 1 and 18 DF, p-value: 0.000145



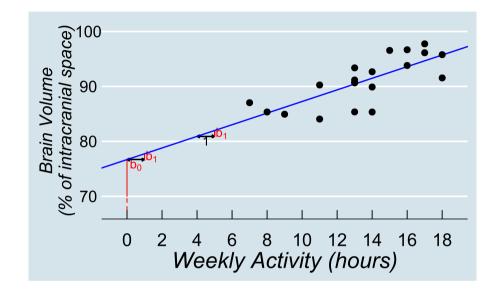
 $b_0 = 76.7; \quad b_1 = 1.06$ 



 $b_0 = 76.7; \quad b_1 = 1.06$ 



 $b_0 = 76.7; \quad b_1 = 1.06$ 



 $b_0 = 76.7; \quad b_1 = 1.06$ 

## End of Part 1

# Part 2 Significance

## Intercept and Slope

mod <- lm(brain\_vol ~ weekly\_actv, data=dat)
summary(mod)</pre>

## ## Call: ## lm(formula = brain\_vol ~ weekly\_actv, data = dat) ## ## Residuals: ## Min 10 Median 30 Мах ## -6.144 -1.342 0.274 2.199 4.009 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 76.685 3.052 25.12 1.8e-15 \*\*\* ## weekly\_actv 1.057 0.221 4.79 0.00015 \*\*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.02 on 18 degrees of freedom ## Multiple R-squared: 0.561, Adjusted R-squared: 0.536 ## F-statistic: 23 on 1 and 18 DF, p-value: 0.000145

## Are We Impressed?

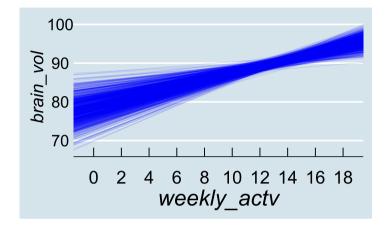
- we have an intercept of 76.7 and a slope of 1.06
- in NHST world, our pressing question is

## Are We Impressed?

- we have an intercept of 76.7 and a slope of 1.06
- in NHST world, our pressing question is

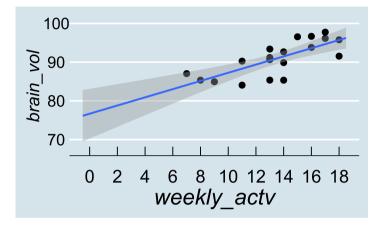
how likely would we have been to find these parameters under the null hypothesis?

## **Testing Chance**



- repeatedly sampling 20~datapoints from the population
  - $\circ\;\;$  variability in *height* of line = variability in intercept (  $b_0$  )
  - $\circ$  variability in *angle* of line = variability in slope ( $b_1$ )

#### We've Seen This Before



- shaded area represents "95% confidence interval"
  - if we repeatedly sampled 20 items from the population...
  - assumes that the 20 we have are the *best estimate* of the population

## The Good Old *t*-Test

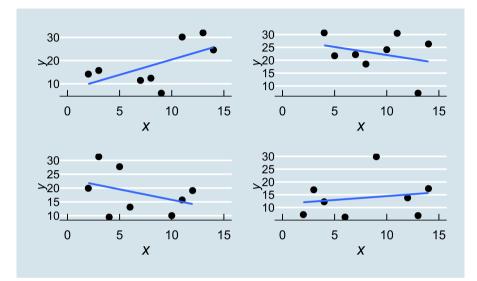
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 76.685 3.052 25.12 1.8e-15 \*\*\*
## weekly\_actv 1.057 0.221 4.79 0.00015 \*\*\*

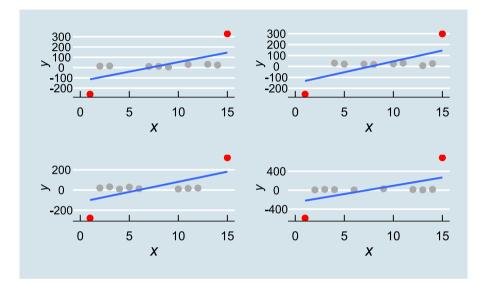
- for each model parameter we are interested in whether it is *different from zero*
- intercept: just like a mean
- slope: does the best-fit line differ from horizontal?

## The Good Old *t*-Test

| ## |             | Estimate | Std. | Error | t | value | Pr(> t ) |     |
|----|-------------|----------|------|-------|---|-------|----------|-----|
| ## | (Intercept) | 76.685   |      | 3.052 |   | 25.12 | 1.8e-15  | *** |
| ## | weekly_actv | 1.057    |      | 0.221 |   | 4.79  | 0.00015  | *** |

- for each model parameter we are interested in whether it is different from zero
- intercept: just like a mean
- slope: does the best-fit line differ from horizontal?
- these are just (two-tailed) one-sample *t*-tests
  - **standard error** is the standard deviation of doing these lots of times
  - t value is Estimate Std. Error
  - to calculate *p*, we need to know the *degrees of freedom*





- in fact we subtract 2 degrees of freedom because we "know" two things
  - $\circ$  intercept (  $b_0$  )
  - $\circ~$  slope (  $b_1$  )
- the remaining degrees of freedom are the *residual* degrees of freedom

- in fact we subtract 2 degrees of freedom because we "know" two things
  - $\circ$  intercept (  $b_0$  )
  - $\circ~$  slope (  $b_1$  )
- the remaining degrees of freedom are the *residual* degrees of freedom
- the *model* also has associated degrees of freedom
  - $\circ$  2 (intercept, slope) 1 (knowing one affects the other)

the models we have been looking at have 20 observations and 1 predictor

(1, 18) degrees of freedom

#### Linear Models in R

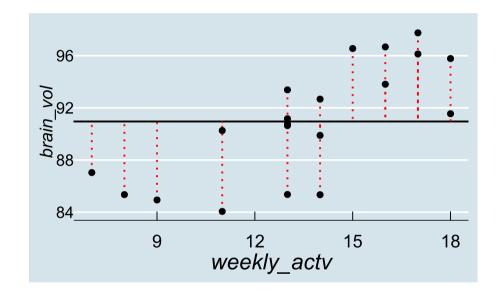
mod <- lm(brain\_vol ~ weekly\_actv, data=dat)
summary(mod)</pre>

## ## Call: ## lm(formula = brain\_vol ~ weekly\_actv, data = dat) ## ## Residuals: ## Min 10 Median Мах 30 ## -6.144 -1.342 0.274 2.199 4.009 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 76.685 3.052 25.12 1.8e-15 \*\*\* ## weekly\_actv 1.057 0.221 4.79 0.00015 \*\*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.02 on 18 degrees of freedom ## Multiple R-squared: 0.561, Adjusted R-squared: 0.536 ## F-statistic: 23 on 1 and 18 DF, p-value: 0.000145

## Total Sum of Squares

$$\mathrm{total}~\mathrm{SS} = \sum{(y-\bar{y})^2}$$

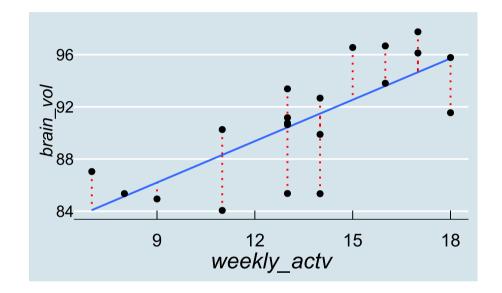
- sum of squares between observed y and mean  $ar{y}$
- represents the total amount of variance in the model
- how much does the observed data vary from a model which says "there is no effect of *x*" (null model)?



## Residual Sum of Squares

$$\text{residual SS} = \sum{(y-\hat{y})^2}$$

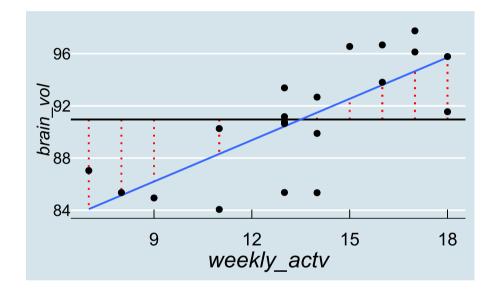
- sum of squared differences between observed y and predicted  $\hat{y}$
- represents the unexplained variance in the model
- how much does the observed data vary from the existing model?



## Model Sum of Squares

$$\mathrm{model}\,\mathrm{SS}=\sum{(\hat{y}-ar{y})^2}$$

- sum of squared differences between predicted  $\hat{y}$  and mean  $ar{y}$
- represents the additional variance explained by the current model over the null model

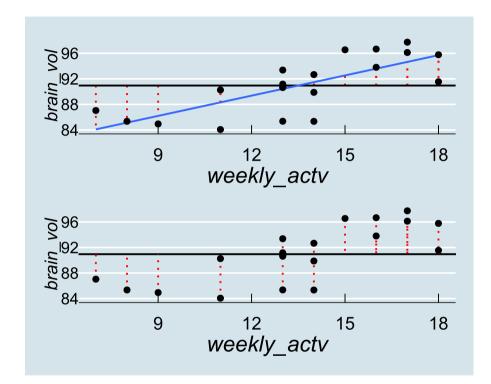


## Testing the Model: $R^2$

$$R^2 = rac{ ext{model SS}}{ ext{total SS}} = rac{\sum{(\hat{y} - ar{y})^2}}{\sum{(y - ar{y})^2}}$$

"how much the model improves over the null"

- $0 \leq R^2 \leq 1$
- we want  $R^2$  to be large
- for a single predictor,  $\sqrt{R^2} = |r|$



## Testing the Model: F

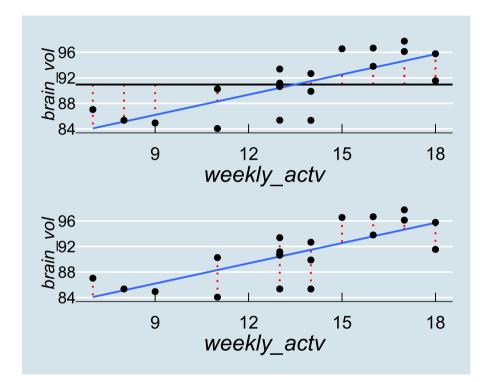
#### ${\cal F}$ ratio depends on mean squares

$$(\,{
m MS}_x={
m SS}_x/{
m df}_x\,) 
onumber \ F=rac{
m model\,MS}{
m residual\,MS}=rac{\sum{(\hat{y}-ar{y})^2/{
m df}_m}}{\sum{(y-\hat{y})^2/{
m df}_r}}$$

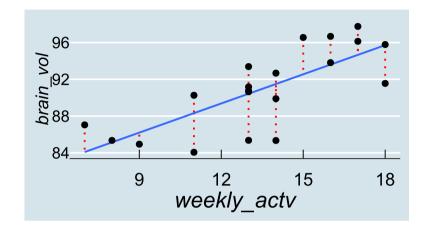
"how much the model improves over chance"

• 0 < F

- we want *F* to be large
- significance of *F* does not always equate to a large (or theoretically sensible) effect



## A Linear Model for 20 Brains



- a linear model describes the **best-fit line** through the data
- minimises the error terms  $\epsilon$  or residuals

## Two Types of Significance

mod <- lm(brain\_vol ~ weekly\_actv, data=dat)
summary(mod)</pre>

## ## Call: ## lm(formula = brain\_vol ~ weekly\_actv, data = dat) ## ## Residuals: ## Min 10 Median 30 Мах ## -6.144 -1.342 0.274 2.199 4.009 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 76.685 3.052 25.12 1.8e-15 \*\*\* ## weekly\_actv 1.057 0.221 4.79 0.00015 \*\*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 3.02 on 18 degrees of freedom ## Multiple R-squared: 0.561, Adjusted R-squared: 0.536 ## F-statistic: 23 on 1 and 18 DF, p-value: 0.000145

## The Good, the Bad, and the Ugly

- we can easily extend this approach
  - use more than one predictor
  - generalised linear model

- not a panacea
  - $\circ~$  depends on assumptions about the data
  - depends on *decisions* about analysis

## The Good, the Bad, and the Ugly

- we can easily extend this approach
  - use more than one predictor
  - generalised linear model

- not a panacea
  - depends on assumptions about the data
  - depends on *decisions* about analysis

- like other statistics, linear models don't tell you "about" your data
- they simply assess what is (un)likely to be due to chance
- the key to good statistics is *common sense and good interpretation*



## End