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is there anything more the data about exercise and brain volume can tell us?

so far we know they're correlated, but it would be good if we could something about how good/ba

how much better does exercise make things?

Part 1: Correlation++
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is there anything more the data about exercise and brain volume can tell us?

so far we know they're correlated, but it would be good if we could something about how good/ba

how much better does exercise make things?
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this kind of information is based on the assumption that the relationship between activity and bra

that is, that each additional minute of activity affects brain volume by the same amount

, 

Exercising our brains

r = 0.7488 p = 0.0001

3 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

this kind of information is based on the assumption that the relationship between activity and bra

that is, that each additional minute of activity affects brain volume by the same amount
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"for every extra 1 hour more weekly activity, brain volume increases by 1.06
(% of intracranial space)"

Exercising our brains (2)
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The Only Equation You Will Ever Need

(model)i

outcomei

prediction

observation

erroriy 
ax

is

outcomei = (model)i + errori
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The Only Equation You Will Ever Need

to get any further, we need to make assumptions

nature of the model

(linear)

nature of the errors

(normal)

outcomei = (model)i + errori
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A Linear Model

so the linear model itself is...

y ~ 1 + x

 outcomei = (model)i + errori

yi = b0 ⋅ 1 + b1 ⋅ xi + ϵi

ŷ i = b0 ⋅ 1 + b1 ⋅ xi
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 is what the model predicts for 

 is the actual value that was observed for 

why would we care?

for one thing, the model can predict  for values of  that we have never observed
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 is what the model predicts for 

 is the actual value that was observed for 

why would we care?

for one thing, the model can predict  for values of  that we have never observed

ŷ i xi

yi xi

ŷ x
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Take An Observation

x  = 1.2, y  = 9.9i i

ŷ i = b0 + b1 ⋅ xi = 7.4

yi = ŷ i + ϵi = 7.4 + 2.5
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"for every extra 1 hour more weekly activity, brain volume increases by 1.06
(% of intracranial space)"

+ geom_smooth(method="lm")

More Brain Exercises
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"for every extra 1 hour more weekly activity, brain volume increases by 1.06
(% of intracranial space)"

+ geom_smooth(method="lm")

More Brain Exercises

but how can we evaluate our model?
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Linear Models in R
mod <- lm(brain_vol ~ weekly_actv, data=dat)
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 is the the predicted value, , when . Here I've represented it as a line, so where the top is tb0 ȳ x = 0

Linear Models in R
mod <- lm(brain_vol ~ weekly_actv, data=dat)
summary(mod)

## 
## Call:
## lm(formula = brain_vol ~ weekly_actv, data = dat)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.144 -1.342  0.274  2.199  4.009 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   76.685      3.052   25.12  1.8e-15 ***
## weekly_actv    1.057      0.221    4.79  0.00015 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.02 on 18 degrees of freedom
## Multiple R-squared:  0.561,    Adjusted R-squared:  0.536 
## F-statistic:   23 on 1 and 18 DF,  p-value: 0.000145
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Intercept and Slope Again
b0 = 76.7; b1 = 1.06

10 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

NOTES FOR NEXT SLIDE

Intercept and Slope Again
b0 = 76.7; b1 = 1.06

10 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

NOTES FOR NEXT SLIDE

note that the intercept is really very far from the data we're interested in.

it may be pretty meaningless to talk about the brain volume of someone who does zero hours activ
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End of Part 1
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Part 2

Significance

12 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

NOTES FOR NEXT SLIDE

Intercept and Slope
mod <- lm(brain_vol ~ weekly_actv, data=dat)
summary(mod)

## 
## Call:
## lm(formula = brain_vol ~ weekly_actv, data = dat)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.144 -1.342  0.274  2.199  4.009 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   76.685      3.052   25.12  1.8e-15 ***
## weekly_actv    1.057      0.221    4.79  0.00015 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.02 on 18 degrees of freedom
## Multiple R-squared:  0.561,    Adjusted R-squared:  0.536 
## F-statistic:   23 on 1 and 18 DF,  p-value: 0.000145
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Are We Impressed?
we have an intercept of 76.7 and a slope of 1.06

in NHST world, our pressing question is
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Are We Impressed?
we have an intercept of 76.7 and a slope of 1.06

in NHST world, our pressing question is

 

how likely would we have been to find these parameters under the null hypothesis?
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if you were able to lay these graphs over each other, they wouldn't be the same
in the simulation graph, we know the entire population (of 50 drink-drivers) we're repeatedly samp
in this graph, the only information we have is that our 20 drink-drivers represent "the population" 

so the 20 are our "best estimate" of the population
just like means and standard errors (here the edges of the grey regions are 2.1009 standard e

Testing Chance

repeatedly sampling 20~datapoints from the population

variability in height of line = variability in intercept (  )
variability in angle of line = variability in slope (  )

b0

b1
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if you were able to lay these graphs over each other, they wouldn't be the same
in the simulation graph, we know the entire population (of 50 drink-drivers) we're repeatedly samp
in this graph, the only information we have is that our 20 drink-drivers represent "the population" 

so the 20 are our "best estimate" of the population
just like means and standard errors (here the edges of the grey regions are 2.1009 standard e
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We've Seen This Before

shaded area represents "95% confidence interval"

if we repeatedly sampled 20 items from the population...
assumes that the 20 we have are the best estimate of the population
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The Good Old t-Test
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   76.685      3.052   25.12  1.8e-15 ***
## weekly_actv    1.057      0.221    4.79  0.00015 ***

for each model parameter we are interested in whether it is different from zero

intercept: just like a mean

slope: does the best-fit line differ from horizontal?
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##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   76.685      3.052   25.12  1.8e-15 ***
## weekly_actv    1.057      0.221    4.79  0.00015 ***

for each model parameter we are interested in whether it is different from zero

intercept: just like a mean

slope: does the best-fit line differ from horizontal?

these are just (two-tailed) one-sample -tests

standard error is the standard deviation of doing these lots of times
t value is 
to calculate , we need to know the degrees of freedom

t

Estimate

Std. Error

p

17 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

NOTES FOR NEXT SLIDE

we can always add in two points to make the straight line that we want to see
this is one way of showing that for  data points, there are  degrees of freedomn n − 2

Degrees of Freedom
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Degrees of Freedom
in fact we subtract 2 degrees of freedom because we "know" two things

intercept (  )

slope (  )

the remaining degrees of freedom are the residual degrees of freedom

b0

b1
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Degrees of Freedom
in fact we subtract 2 degrees of freedom because we "know" two things

intercept (  )

slope (  )

the remaining degrees of freedom are the residual degrees of freedom

the model also has associated degrees of freedom

2 (intercept, slope) - 1 (knowing one affects the other)

the models we have been looking at have 20 observations and 1 predictor

(1, 18) degrees of freedom

b0

b1
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Linear Models in R
mod <- lm(brain_vol ~ weekly_actv, data=dat)
summary(mod)

## 
## Call:
## lm(formula = brain_vol ~ weekly_actv, data = dat)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.144 -1.342  0.274  2.199  4.009 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   76.685      3.052   25.12  1.8e-15 ***
## weekly_actv    1.057      0.221    4.79  0.00015 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.02 on 18 degrees of freedom
## Multiple R-squared:  0.561,    Adjusted R-squared:  0.536 
## F-statistic:   23 on 1 and 18 DF,  p-value: 0.000145
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sum of squares between observed  and mean 

represents the total amount of variance in the model

how much does the observed data vary from a model which says "there
is no effect of " (null model)?

Total Sum of Squares
total SS = ∑ (y − ȳ)2

y ȳ

x

21 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

NOTES FOR NEXT SLIDE

sum of squared differences between observed  and predicted 

represents the unexplained variance in the model

how much does the observed data vary from the existing model?

Residual Sum of Squares
residual SS = ∑ (y − ŷ)2

y ŷ

22 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

NOTES FOR NEXT SLIDE

sum of squared differences between predicted  and mean 

represents the additional variance explained by the current model over
the null model

Model Sum of Squares
model SS = ∑ (ŷ − ȳ)2

ŷ ȳ
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"how much the model improves over the null"

we want  to be large

for a single predictor, 

Testing the Model: R2

R2 = =
model SS

total SS

∑ (ŷ − ȳ)2

∑ (y − ȳ)2

0 ≤ R2 ≤ 1

R2

√R2 = |r|

24 / 29



+ 
 -

NOTES FOR CURRENT SLIDE

NOTES FOR NEXT SLIDE

 ratio depends on mean squares 


(  )

"how much the model improves over chance"

we want  to be large

significance of  does not always equate to a large (or theoretically
sensible) effect

Testing the Model: F

F

MSx = SSx/dfx

F = =
model MS

residual MS

∑ (ŷ − ȳ)2/dfm

∑ (y − ŷ)2/dfr

0 < F

F

F
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A Linear Model for 20 Brains

a linear model describes the best-fit line through the data

minimises the error terms  or residualsϵ
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Two Types of Significance
mod <- lm(brain_vol ~ weekly_actv, data=dat)
summary(mod)

## 
## Call:
## lm(formula = brain_vol ~ weekly_actv, data = dat)
## 
## Residuals:
##    Min     1Q Median     3Q    Max 
## -6.144 -1.342  0.274  2.199  4.009 
## 
## Coefficients:
##             Estimate Std. Error t value Pr(>|t|)    
## (Intercept)   76.685      3.052   25.12  1.8e-15 ***
## weekly_actv    1.057      0.221    4.79  0.00015 ***
## ---
## Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## 
## Residual standard error: 3.02 on 18 degrees of freedom
## Multiple R-squared:  0.561,    Adjusted R-squared:  0.536 
## F-statistic:   23 on 1 and 18 DF,  p-value: 0.000145
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The Good, the Bad, and the Ugly

we can easily extend this approach

use more than one predictor

generalised linear model

not a panacea

depends on assumptions about the data

depends on decisions about analysis
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The Good, the Bad, and the Ugly

we can easily extend this approach

use more than one predictor

generalised linear model

not a panacea

depends on assumptions about the data

depends on decisions about analysis

like other statistics, linear models don't tell you "about" your data

they simply assess what is (un)likely to be due to chance

the key to good statistics is common sense and good interpretation
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End
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