Week 7: The Linear Model

Univariate Statistics and Methodology using R

Department of Psychology
The University of Edinburgh



Part 1: Correlation++



Exercising our brains
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r = 0.7488,p = 0.0001




Exercising our brains (2)
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"for every extra 1 hour more weekly activity, brain volume increases by 1.06
(% of intracranial space)"




The Only Equation You Will Ever Need

outcome; = (model); + error;
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The Only Equation You Will Ever Need

outcome; = (model); + error;

e to get any further, we need to make assumptions
e nature of the

(linear)
e nature of the

(normal)



A Linear Model

outcome; = (model); + error;
Yi=0by-14+b1-z;+e¢
so the linear model itself is...

g, =bo-1+by-z;

y~1+x



A Linear Model

outcome; = (model); + error;

b0=5,b1=2

Yi=0by-14+b1-z;+e¢

3
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g, =by-1+b -z > T by (slope)
.5
y~1+x "
<> by (intercept)
0 | | | |




A Linear Model

outcome; = (model); + error;
Yi=0by-14+b1-z;+e¢
so the linear model itself is...

g;=0bo-1+0by-x

y~1+x

b0=5,b1=2

by (intercept)

b4 (slope)




Take An Observation
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More Brain Exercises

"for every extra 1 hour more weekly activity, brain volume increases by 1.06
(% of intracranial space)"

+ geom_smooth(method="1m")
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More Brain Exercises

"for every extra 1 hour more weekly activity, brain volume increases by 1.06 + geom_smooth (method="1m")
(% of intracranial space)"
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but how can we evaluate our model?



Linear Models in R

mod <- lm(brain_vol ~ weekly_actv, data=dat)



Linear Models in R

mod <- Im(brain_vol ~ weekly_actv, data=dat)
summary (mod)

##
##
#H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = brain_vol ~ weekly_actv, data = dat)
Residuals:
Min 1Q Median 3Q Max
-6.144 -1.342 0.274 2.199 4.009
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 76.685 3.052 25.12 1.8e-15 *%x%
weekly_actv 1.057 0.221 4.79 0.00015 **x*
Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
Residual standard error: 3.02 on 18 degrees of freedom

Multiple R-squared: 0.561, Adjusted R-squared: 0.536
F-statistic: 23 on 1 and 18 DF, p-value: 0.000145
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Intercept and Slope Again

b() = 767, b1 = 1.06
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Intercept and Slope Again

b() = 767, b1 = 1.06
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Intercept and Slope Again

b() = 767, b1 = 1.06
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Intercept and Slope Again

b() = 767, b1 = 1.06
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End of Part 1



Part 2

Significance



Intercept and Slope

mod <- lm(brain_vol ~ weekly_actv, data=dat)
summary (mod)

##
##
#H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = brain_vol ~ weekly_actv, data = dat)
Residuals:
Min 1Q Median 3Q Max
-6.144 -1.342 0.274 2.199 4.009
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 76.685 3.052 25.12 1.8e-15 *%x%
weekly_actv 1.057 0.221 4.79 0.00015 **x*
Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
Residual standard error: 3.02 on 18 degrees of freedom

Multiple R-squared: 0.561, Adjusted R-squared: 0.536
F-statistic: 23 on 1 and 18 DF, p-value: 0.000145
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Are We Impressed?

e we have an intercept of 76.7 and a slope of 1.06

e in NHST world, our pressing question is



Are We Impressed?

¢ we have an intercept of 76.7 and a slope of 1.06

e in NHST world, our pressing question is

how likely would we have been to find these parameters under the null hypothesis?




Testing Chance
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e repeatedly sampling 20~datapoints from the population

o variability in height of line = variability in intercept ( by )
o variability in angle of line = variability in slope ( b7 )



We've Seen This Before
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e shaded area represents "95% confidence interval"

o if we repeatedly sampled 20 items from the population...
o assumes that the 20 we have are the best estimate of the population



The Good Old t-Test

i Estimate Std. Error t value Pr(>|t])
## (Intercept) 76.685 3.052 25.12 1.8e-15 *x*xx
## weekly_actv 1.057 0.221 4.79 0.00015 **x*

e for each model parameter we are interested in whether it is different from zero
J : just like a mean

o : does the best-fit line differ from horizontal?



The Good Old t-Test

i Estimate Std. Error t value Pr(>|t])
## (Intercept) 76.685 3.052 25.12 1.8e-15 *x*xx
## weekly_actv 1.057 0.221 4.79 0.00015 **x*

e for each model parameter we are interested in whether it is different from zero
J : just like a mean

. : does the best-fit line differ from horizontal?

e these are just (two-tailed) one-sample t-tests

o is the standard deviation of doing these lots of times
is Estimate
Std. Error
o to calculate p, we need to know the degrees of freedom



Degrees of Freedom
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Degrees of Freedom
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Degrees of Freedom

e infact we subtract 2 degrees of freedom because we "know" two things
o intercept (bg)
o slope(b;)

e the remaining degrees of freedom are the residual degrees of freedom



Degrees of Freedom

e in fact we subtract 2 degrees of freedom because we "know" two things
o intercept (bg)
o slope (by)
e the remaining degrees of freedom are the residual degrees of freedom
¢ the model also has associated degrees of freedom

o 2 (intercept, slope) - 1 (knowing one affects the other)

the models we have been looking at have 20 observations and 1 predictor

(1, 18) degrees of freedom




Linear Models in R

mod <- Im(brain_vol ~ weekly_actv, data=dat)
summary (mod)

##
##
#H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = brain_vol ~ weekly_actv, data = dat)
Residuals:
Min 1Q Median 3Q Max
-6.144 -1.342 0.274 2.199 4.009
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 76.685 3.052 25.12 1.8e-15 #*%x%
weekly_actv 1.057 0.221 4.79 0.00015 **x*
Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
Residual standard error: 3.02 on 18 degrees of freedom

Multiple R-squared: 0.561, Adjusted R-squared: 0.536
F-statistic: 23 on 1 and 18 DF, p-value: 0.000145
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Total Sum of Squares

total SS = Z (y—17)

e sum of squares between observed y and mean y
e represents the total amount of variance in the model

e how much does the observed data vary from a model which says "there
is no effect of " ( )?
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Residual Sum of Squares
residual SS = Z (y —

e sum of squared differences between observed y and predicted ¢
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Model Sum of Squares
model SS = Z(yj — )

e sum of squared differences between predicted ¢ and mean ¥

e represents the additional variance explained by the current model over 96
the null model -
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Testing the Model: R?

o modelSS > (y —

)2

~ totalSS >

"how much the model improves over the null"

e 0<R’<1
 we want R? to be large

* forasingle predictor, v R? = |r|
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Testing the Model: F

F'ratio depends on

(MS, = SS,/df; )

model MS > (§ — ¢
residual MS Y. (y— 9

brain vol

)/ dfm
)?/df

"how much the model improves over chance"

e 0 < F

e we want F'to be large

brain vol

e significance of F' does not always equate to a large (or theoretically
sensible) effect
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A Linear Model for 20 Brains

brain vol

e alinear model describes the through the data

e minimises the error terms € or
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Two Types of Significance

mod <- lm(brain_vol ~ weekly_actv, data=dat)
summary (mod)

##
##
#H#
##
##
##
##
##
##
##
##
##
##
##
##
##
##
##

Call:
Im(formula = brain_vol ~ weekly_actv, data = dat)
Residuals:
Min 1Q Median 3Q Max
-6.144 -1.342 0.274 2.199 4.009
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) 76.685 3.052 25.12 1.8e-15 *%x%
weekly_actv 1.057 0.221 4.79 0.00015 **x*
Signif. codes: 0 'xxx' 0.001 'xx' 0.01 'x' 0.05 '.' 0.1
Residual standard error: 3.02 on 18 degrees of freedom

Multiple R-squared: 0.561, Adjusted R-squared: 0.536
F-statistic: 23 on 1 and 18 DF, p-value: 0.000145
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The Good, the Bad, and the Ugly

e we can easily extend this approach * nota panacea
o use more than one predictor o depends on assumptions about the data

o generalised linear model o depends on decisions about analysis



The Good, the Bad, and the Ugly

e we can easily extend this approach ® nota panacea
o use more than one predictor o depends on assumptions about the data
o generalised linear model o depends on decisions about analysis

e like other statistics, linear models don't tell you "about" your data

e they simply assess what is (un)likely to be due to chance

¢ the key to good statistics is common sense and good interpretation




End



