

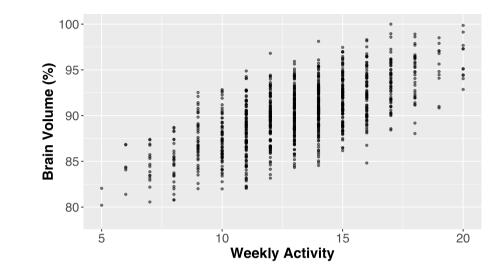
Week 5: Correlations

Univariate Statistics and Methodology using R

Department of Psychology The University of Edinburgh

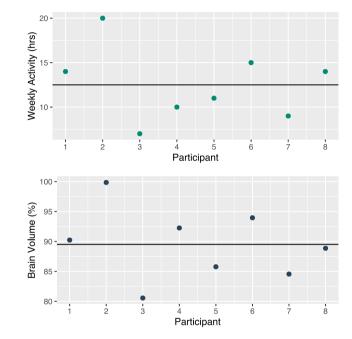
Part 1: Correlation

Brain Volume & Activity Level

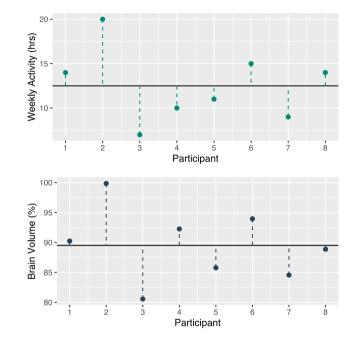


- A measure of the relationship between two continuous variables
- Does a linear relationship exist between x and y?
- Specifically, do two variables covary?
 - A change in one equates to a change in the other

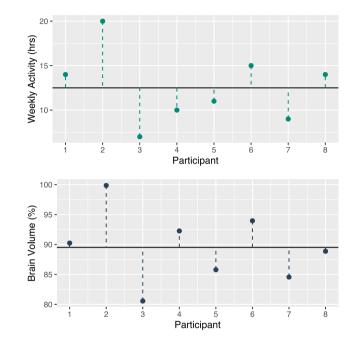
- A measure of the relationship between two continuous variables
- Does a linear relationship exist between *x* and *y*?
- Specifically, do two variables covary?
 - A change in one equates to a change in the other
- Does *y* vary with *x* ?
- Equivalent to asking "does *y* differ from its mean in the same way *x* does?"



- A measure of the relationship between two continuous variables
- Does a linear relationship exist between *x* and *y*?
- Specifically, do two variables covary?
 - A change in one equates to a change in the other
- Does *y* vary with *x* ?
- Equivalent to asking "does *y* differ from its mean in the same way *x* does?"



- A measure of the relationship between two continuous variables
- Does a linear relationship exist between *x* and *y*?
- Specifically, do two variables covary?
 - A change in one equates to a change in the other
- Does *y* vary with *x* ?
- Equivalent to asking "does *y* differ from its mean in the same way *x* does?"
- It's likely the variables are related if observations differ proportionally from their means



Variance

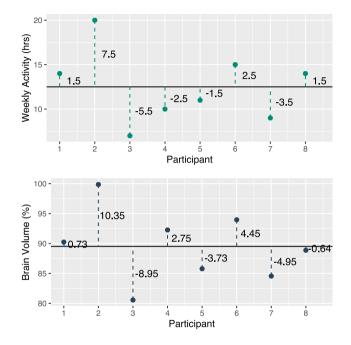
$$s^2=rac{\sum{(x-ar{x})^2}}{n}=rac{\sum{(x-ar{x})(x-ar{x})}}{n}$$

Variance

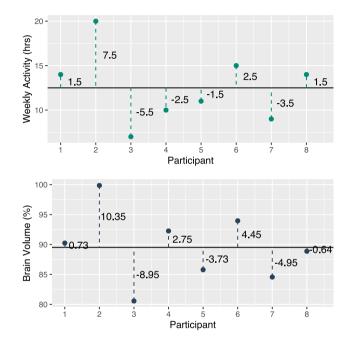
$$s^2=rac{\sum{(x-ar{x})^2}}{n}=rac{\sum{(x-ar{x})(x-ar{x})}}{n}$$

Covariance

$$\mathrm{cov}(x,y) = rac{\sum{(x-ar{x})(y-ar{y})}}{n}$$



-		
$x-ar{x}$	$y-ar{y}$	$(x-ar{x})(y-ar{y})$
1.5	0.73	1.095
7.5	10.35	77.625
-5.5	-8.95	49.225
-2.5	2.75	-6.875
-1.5	-3.73	5.595
2.5	4.45	11.125
-3.5	-4.95	17.325
1.5	-0.64	-0.96
		154.16



$x-ar{x}$	$y-ar{y}$	$(x-ar{x})(y-ar{y})$
1.5	0.73	1.095
7.5	10.35	77.625
-5.5	-8.95	49.225
-2.5	2.75	-6.875
-1.5	-3.73	5.595
2.5	4.45	11.125
-3.5	-4.95	17.325
1.5	-0.64	-0.96
		154.16

$$\operatorname{cov}(x,y) = rac{\sum (x-ar{x})(y-ar{y})}{n} = rac{154.16}{8} = 30.83$$

The Problem With Covariance

Miles

$x-ar{x}$	$y-ar{y}$	$(x-ar{x})(y-ar{y})$
-0.99	-0.1	0.1
3.22	1.78	5.73
2.46	0.97	2.38
-2.65	-1.31	3.47
-2.04	-1.34	2.73
		14.41

$$\operatorname{cov}(x,y) = rac{14.41}{5} \simeq 2.88$$

Kilometres

~ ~	a	$(m, \bar{m})(\alpha, \bar{\alpha})$
x - x	y - y	$(x-ar{x})(y-ar{y})$
-1.6	-0.16	0.25
5.19	2.86	14.84
3.96	1.56	6.16
-4.27	-2.11	8.99
-3.28	-2.15	7.06
		37.3

$$\operatorname{cov}(x,y) = rac{37.3}{5} \simeq 7.46$$

Correlation Coefficient

• The standardised version of covariance is the correlation coefficient, r

 $r = \frac{\operatorname{covariance}(x, y)}{\operatorname{standard} \operatorname{deviation}(x) \cdot \operatorname{standard} \operatorname{deviation}(y)}$

Correlation Coefficient

• The standardised version of covariance is the correlation coefficient, r

 $r = rac{\operatorname{covariance}(x, y)}{\operatorname{standard deviation}(x) \cdot \operatorname{standard deviation}(y)}$

$$r=rac{rac{\sum{(x-ar{x})(y-ar{y})}}{N}}{\sqrt{rac{\sum{(x-ar{x})^2}}{N}}\sqrt{rac{\sum{(y-ar{y})^2}}{N}}}$$

Correlation Coefficient

• The standardised version of covariance is the correlation coefficient, r

 $r = rac{ ext{covariance}(x, y)}{ ext{standard deviation}(x) \cdot ext{standard deviation}(y)}$

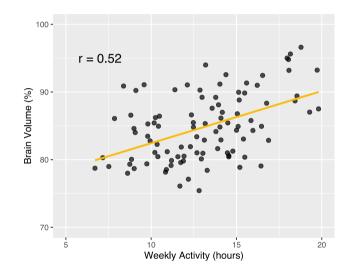
$$r = \frac{\frac{\sum (x-\bar{x})(y-\bar{y})}{N}}{\sqrt{\frac{\sum (x-\bar{x})^2}{N}}\sqrt{\frac{\sum (y-\bar{y})^2}{N}}}$$

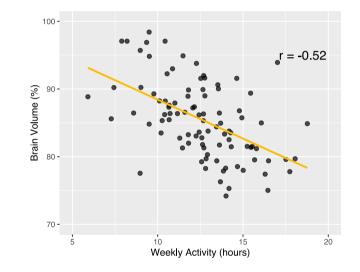
$$r=rac{\sum{(x-ar{x})(y-ar{y})}}{\sqrt{\sum{(x-ar{x})^2}}\sqrt{\sum{(y-ar{y})^2}}}$$

Interpeting *r*

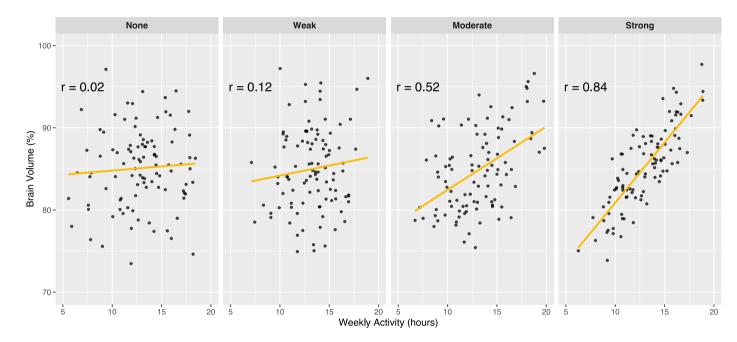
 $-1 \leq r \leq 1$ (± 1 = perfect fit; 0 = no fit; sign shows direction of slope)

The sign of r gives you information about the direction of the relationship



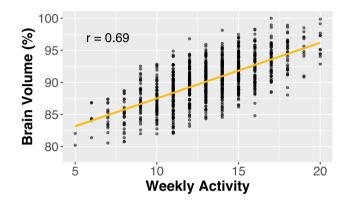


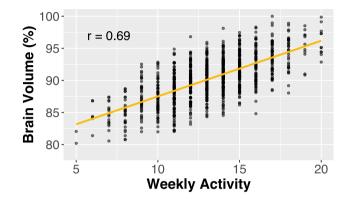
Interpreting r

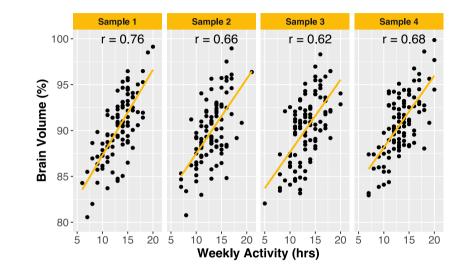


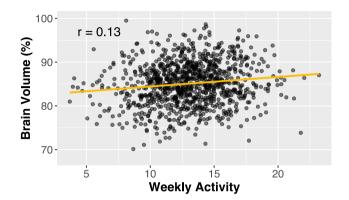
Part 2

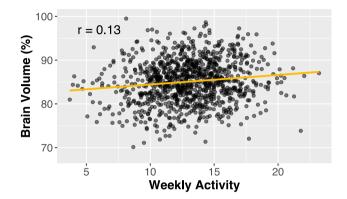
Hypothesis Testing with Correlation

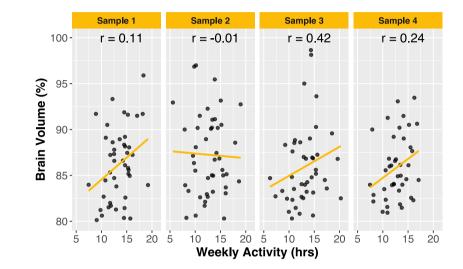












Hypothesis Testing

- Does a linear relationship exist between *x* and *y* ?
- $H_0: r_{population} = 0$

Hypothesis Testing

- Does a linear relationship exist between *x* and *y*?
- $H_0: r_{population} = 0$
- Two-tailed
 - $\circ \; H_1: r_{population}
 eq 0$
 - $\circ~$ There is a significant relationship between brain volume and weekly activity.
 - $\circ~$ As brain volume changes, weekly activity changes.

Hypothesis Testing

- Does a linear relationship exist between *x* and *y*?
- $H_0: r_{population} = 0$
- Two-tailed
 - $\circ \hspace{0.1 cm} H_{1}: r_{population}
 eq 0$
 - $\circ~$ There is a significant relationship between brain volume and weekly activity.
 - $\circ~$ As brain volume changes, weekly activity changes.
- One-tailed
 - $\circ \; H_1: r_{population} > 0 \; {
 m OR} \, r_{population} < 0$
 - $\circ~$ As weekly activity increases, brain volume increases.
 - As weekly activity increases, brain volume decreases.

Significance of a Correlation

- We want to know whether a correlation is significant
 - i.e., whether the probability of finding it by chance is low enough
- Cardinal rule in NHST: compare everything to chance
- Let's investigate by examining the range of r values we expect from random data

• Step 1: Pick two random sets of numbers

• Step 1: Pick two random sets of numbers

```
x <- runif(10, min=0, max=100)
y <- runif(10, min=0, max=100)
head(cbind(x,y))</pre>
```

x y
[1,] 1.223 14.537
[2,] 13.186 7.402
[3,] 13.800 45.028
[4,] 55.523 50.858
[5,] 19.738 36.407
[6,] 29.011 82.642

• Step 1: Pick two random sets of numbers

```
x <- runif(10, min=0, max=100)
y <- runif(10, min=0, max=100)
head(cbind(x,y))</pre>
```

x y
[1,] 1.223 14.537
[2,] 13.186 7.402
[3,] 13.800 45.028
[4,] 55.523 50.858
[5,] 19.738 36.407
[6,] 29.011 82.642

• Step 2: Run a correlation

cor(x,y)

[1] 0.6615

• Step 1: Pick two random sets of numbers

```
x <- runif(10, min=0, max=100)
y <- runif(10, min=0, max=100)
head(cbind(x,y))</pre>
```

x y
[1,] 1.223 14.537
[2,] 13.186 7.402
[3,] 13.800 45.028
[4,] 55.523 50.858
[5,] 19.738 36.407
[6,] 29.011 82.642

• Step 2: Run a correlation

cor(x,y)

[1] 0.6615

• Step 3: Repeat. A lot.

• Step 3: Repeat. A lot.

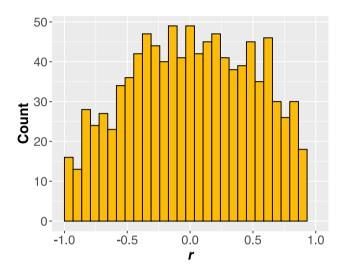
2 -0.05464 ## 3 -0.70928 ## 4 0.80346 ## 5 -0.34746

6 -0.08687

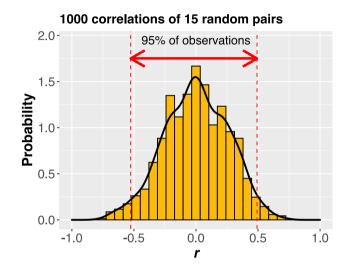
17/34

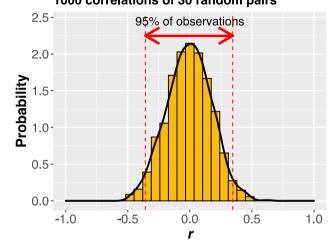
• Step 3: Repeat. A lot.

```
randomCor <- function(size) {</pre>
  x <- runif(size, min=0, max=100)
y <- runif(size, min=0, max=100)</pre>
  cor(x,y) # calculate r
ļ
# then we can use the usual trick:
rs <- data.frame(corrDat =</pre>
                       replicate(1000, randomCor(5)))
head(rs)
##
      corrDat
## 1 -0.42851
## 2 -0.05464
   3 -0.70928
##
## 4 0.80346
## 5 -0.34746
## 6 -0.08687
```



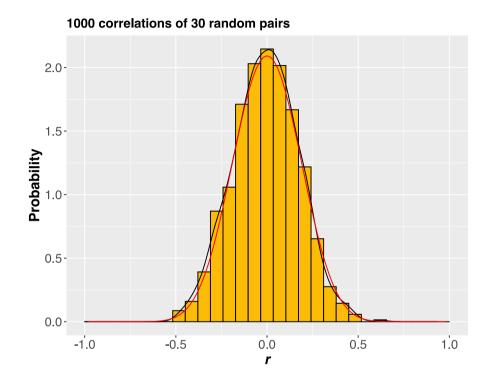
• Extreme scores are less common, so the distribution narrows as more observations are added.





1000 correlations of 30 random pairs

The t distribution



- The distribution of random rs is the t distribution, with n-2 df
- This formula computes the corresponding t statistic for the observed \boldsymbol{r} value

$$t=r\sqrt{rac{n-2}{1-r^2}}$$

• Allows you to calculate the probability of getting a value equal to or more extreme than *r* for sample size *n* by chance

Correlation in R

• In R, you can get the correlation value alone:

cor(bvAl\$weekly_actv, bvAl\$brain_vol)

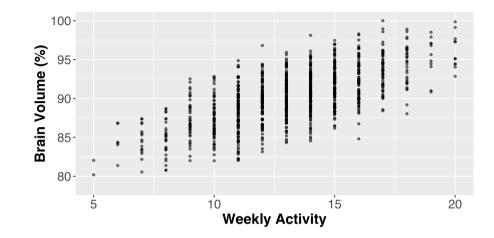
[1] 0.6874

• ...or you can get the full results from a *t* -test of your correlation:

cor.test(bvAl\$weekly_actv, bvAl\$brain_vol)

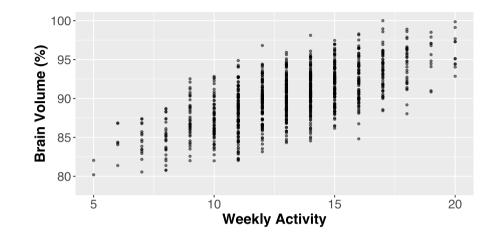
##
Pearson's product-moment correlation
##
data: bvAl\$weekly_actv and bvAl\$brain_vol
t = 30, df = 998, p-value <2e-16
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
0.6532 0.7188
sample estimates:
cor
0.6874</pre>

Reporting Correlation Results



"There was a positive relationship between weekly activity level and brain volume, r(998) = 0.69, p < .001."

Reporting Correlation Results



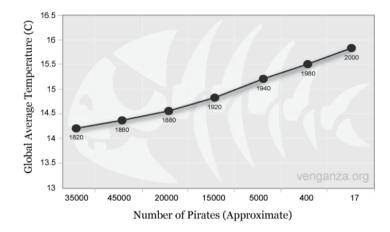
"There was a positive relationship between weekly activity level and brain volume, r(998) = 0.69, p < .001."

• Note the lack of causal language!

• CANNOT SAY "An increase in weekly activity *leads to* an increase in brain volume."

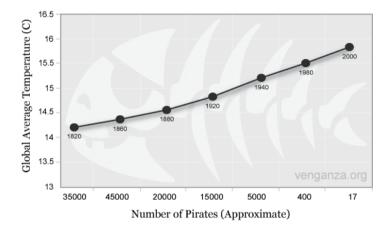
Pirates and Global Warming

Global Average Temperature Vs. Number of Pirates



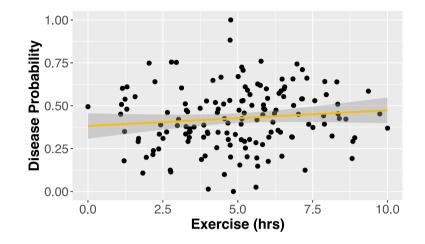
Pirates and Global Warming

Global Average Temperature Vs. Number of Pirates



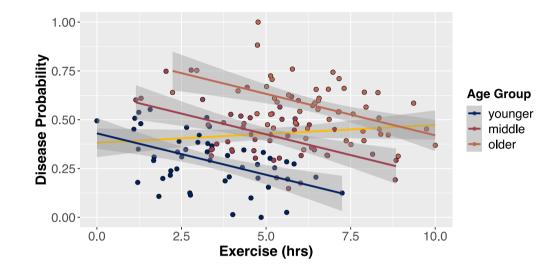
- Clear negative correlation between number of pirates and mean global temperature
- We need pirates to combat global warming

Simpson's Paradox



• The more hours of exercise, the greater the risk of disease

Simpson's Paradox



Age groups mixed together An example of a *mediating variable*

Interpreting Correlation

- Correlation does not imply causation
- Correlation simply suggests that two variables are related
 - There may be mediating variables
- Interpretation of that relationship is key
- Never rely on statistics such as *r* without
 - Looking at your data
 - Thinking about the real world

Part 3 Putting it all Together

Has Statistics Got You Frazzled?

- We've bandied a lot of terms around in quite a short time
- We've tended to introduce them by example
- Time to step back...

What is NHST all about?

Null Hypothesis Statistical Testing

• Two premises

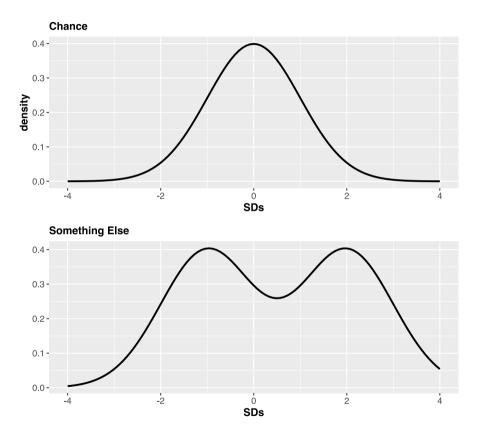
1. Much of the variation in the universe is due to chance

2. We can't *prove* a hypothesis that something else is the cause

Chance

- When we say *chance*, what we really mean is "stuff we didn't measure"
- We believe that "pure" chance conforms approximately to predictable patterns (like the normal and *t* distributions)
 - If our data isn't in a predicted pattern, perhaps we haven't captured all of the non-chance elements

Patterns attributable to



Proof

- Can't prove a hypothesis to be true
- "The sun will rise tomorrow"

Proof

- Can't prove a hypothesis to be true
- "The sun will rise tomorrow"
- Just takes one counterexample

Chance and Proof

If the likelihood that the pattern of data we've observed would be found by chance is low enough, propose an alternative explanation

- Work from summaries of the data (e.g., \bar{x}, σ)
- Use these to approximate chance (e.g., *t* distribution)

Chance and Proof

If the likelihood that the pattern of data we've observed would be found by chance is low enough, propose an alternative explanation

- Work from summaries of the data (e.g., \bar{x}, σ)
- Use these to approximate chance (e.g., *t* distribution)
 - Catch: we can't estimate the probability of an exact value (this is an example of the measurement problem)
 - Estimate the probability of finding the measured difference *or more*

Alpha and Beta

- We need an agreed "standard" for proposing an alternative explanation
 - \circ Typically in psychology, we set lpha to 0.05
 - \circ "If the probability of finding this difference or more under chance is α (e.g., 5%) or less, propose an alternative"

Alpha and Beta

- We need an agreed "standard" for proposing an alternative explanation
 - \circ Typically in psychology, we set lpha to 0.05
 - \circ "If the probability of finding this difference or more under chance is α (e.g., 5%) or less, propose an alternative"
- We also need to understand the quality of evidence we're providing
 - $\circ~$ Can be measured using $\beta~$

• power = 1 - β

- \circ Psychologists typically aim for eta=0.20 (i.e., a power level of 80%)
- \circ "Given that an effect truly exists in a population, what is the probability of finding $p < \alpha$ in a sample (of size *n* etc.)?"

The Rest is Just Nuts and Bolts

- Type of measurement
- Relevant laws of chance
- Suitable estimated distribution (normal, t, χ^2 , etc.)
- Suitable summary statistic (z, t, χ^2, r , etc.)
- Use statistic and distribution to calculate p and compare to lpha
- Rinse, repeat

End