

Week 11: Some Kind of End to the Course

Univariate Statistics and Methodology using R

Department of Psychology The University of Edinburgh

Part 1

Week 7 - 10 Recap

Describing a pattern with a line

ggplot(df, aes(x = x1, y = y)) +
geom_point()

Defining a line

$$y_i = b_0 + b_1(x_{1i}) + arepsilon_i$$

A line can be defined by two values:

- A starting point (Intercept)
 A slope (\$y\$ across x1)

Fitting a linear model to some data provides coefficient estimates \hat{b}_0 and \hat{b}_1 that minimise σ_{ε} .

Testing the coefficients (1)

$$\hat{y}=\hat{b}_0+\hat{b}_1(x_1)$$

In the "null universe" where $b_0 = 0$, when sampling this many people, what is the probability that we will find an intercept at least as extreme as the one we *have* found?

Coefficients:

##		Estimate Std.	Error	t value	Pr(> t)	
##	(Intercept)	6.982	1.026	6.81	1.5e-08	***
##	x1	0.806	0.234	3.45	0.0012	**

Testing the coefficients (2)

$$\hat{y}=\hat{b}_0+oldsymbol{\hat{b}_1}(x_1)$$

In the "null universe" where $b_1 = 0$, when sampling this many people, what is the probability that we will find a relationship at least as extreme as the one we *have* found?

Coefficients:

##		Estimate	Std.	Error	t	value	Pr(> t)	
##	(Intercept)	6.982		1.026		6.81	1.5e-08	***
##	x1	0.806		0.234		3.45	0.0012	**

Coefficient Sampling Variability

$$\hat{y}=\hat{b}_0+\hat{b}_1(x_1)$$

Plausible range of values for b_0 and b_1 :

confint(model)

##		Estimate	2.5 %	97.5 %
##	(Intercept)	6.9816	4.919	9.044
##	xl	0.8057	0.336	1.275

Testing the model

$$egin{aligned} F_{df_{model},df_{residual}} &= rac{MS_{Model}}{MS_{Residual}} = rac{SS_{Model}/df_{Model}}{SS_{Residual}/df_{Residual}} \ df_{model} &= \mathrm{nr} \ \mathrm{predictors} \ df_{residual} &= \mathrm{sample} \ \mathrm{size} - \mathrm{nr} \ \mathrm{predictors} - 1 \end{aligned}$$

##				
##	Multiple R-squared:	0.199,	Adjusted R-squared:	0.182
##	F-statistic: 11.9 on	1 and 48	DF, p-value: 0.00118	

More predictors

More predictors (2)

 $y_i = b_0 + b_1(x_{1i}) + b_2(x_{2i}) + arepsilon_i$

- A starting point (Intercept)
- A slope (across x_1)
- Another slope (across x_2)

Coefficient estimates $\hat{b}_0, \hat{b}_1, \hat{b}_2$ minimise σ_{ε} .

More predictors (3)

Even more predictors...

$$y_i = b_0 + b_1(x_{1i}) + b_2(x_{2i}) + \ldots + b_k(x_{ki}) + arepsilon_i$$

- A starting point (Intercept)
- A slope (across x_1)
- A slope (across x_2)
- ...
- ...
- A slope (across x_k)

associations that depend on other things

interactions

$$y_i = b_0 + b_1(x_{1i}) + b_2(x_{2i}) + b_3(x_{1i} \cdot x_{2i}) + arepsilon_i$$

- starting point (Intercept)
- A slope (across x_1)
- A slope (across x_2)
- ...
- How slope across x_1 changes across x_2

interactions

interactions (2)

other outcomes

$$ln(rac{p}{1-p}) = b_0 + b_1(x_{1i}) + b_2(x_{2i})$$

$$ln(rac{p}{1-p}) \Rightarrow rac{p}{1-p} \Rightarrow p$$

Checking Assumptions: Linear Models

required

- linearity of relationship
- for the *residuals*:
 - normality
 - homogeneity of variance
 - independence

desirable

- uncorrelated predictors
- no "bad" (overly influential) observations

Checking Assumptions: Logit Models

required

- linearity of relationship between IVs and log-odds
- for the *residuals*:
 - normality
 - homogeneity of variance
 - independence

desirable

- uncorrelated predictors
- no "bad" (overly influential) observations
- large samples (due to maximum likelihood fitting)

End of Part 1

Part 2

Common Tests as linear models

usmr <- read_csv("https://uoepsy.github.io/data/usmr2022.csv")</pre>

Im vs correlation

regression, continuous predictor

```
summary(lm(sleeprating ~ height, data = usmr))
##
## Call:
## lm(formula = sleeprating ~ height, data = usmr)
##
## Residuals:
     Min
             10 Median
##
                           30
                                 Мах
  -65.42 -11.66 5.52 16.96 36.16
##
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 18.785
                           46.879
                                      0.4
                                              0.69
## height
                 0.279
                            0.278
                                      1.0
                                              0.32
##
## Residual standard error: 22.6 on 76 degrees of freedom
## (2 observations deleted due to missingness)
## Multiple R-squared: 0.013, Adjusted R-squared: 4.73e-05
## F-statistic: 1 on 1 and 76 DF, p-value: 0.32
```

Correlation

cor.test(usmr\$height, usmr\$sleeprating)

##
Pearson's product-moment correlation
##
data: usmr\$height and usmr\$sleeprating
t = 1, df = 76, p-value = 0.3
alternative hypothesis: true correlation is not equal to 0
95 percent confidence interval:
-0.1112 0.3284
sample estimates:
cor
0.1142

lm vs t.test

regression, intercept

summary(lm(height ~ 1, data = usmr))

Call: ## lm(formula = height ~ 1, data = usmr) ## ## Residuals: Min 1Q Median 3Q ## Мах ## -15.407 -7.607 -0.107 7.523 20.893 ## ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 168.11 1.04 162 <2e-16 *** ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 9.22 on 78 degrees of freedom ## (1 observation deleted due to missingness)

one sample t.test

t.test(usmr\$height, mu=0)

##
One Sample t-test
##
data: usmr\$height
t = 162, df = 78, p-value <2e-16
alternative hypothesis: true mean is not equal to 0
95 percent confidence interval:
166.0 170.2
sample estimates:
mean of x
168.1</pre>

lm vs t.test (2)

regression, binary predictor

```
summary(lm(height ~ catdog, data = usmr))
##
## Call:
## lm(formula = height ~ catdog, data = usmr)
##
## Residuals:
               1Q Median
      Min
                               3Q
##
                                      Max
## -13.655 -7.501 0.499
                           8.399 19.499
##
## Coefficients:
              Estimate Std. Error t value Pr(>|t|)
##
## (Intercept) 166.36
                             1.55 107.60 <2e-16 ***
## catdogdog
                  3.15
                             2.07
                                   1.52
                                             0.13
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 9.15 on 77 degrees of freedom
## (1 observation deleted due to missingness)
## Multiple R-squared: 0.0291, Adjusted R-squared: 0.0165
## F-statistic: 2.31 on 1 and 77 DF, p-value: 0.133
```

two sample t.test

Two Sample t-test ## ## data: height by catdog ## t = -1.5, df = 77, p-value = 0.1 ## alternative hypothesis: true difference in means between group cat and group ## 95 percent confidence interval: ## -7.2706 0.9796 ## sample estimates: ## mean in group cat mean in group dog ## 166.4 169.5

Im vs Traditional ANOVA

If you should say to a mathematical statistician that you have discovered that linear multiple regression and the analysis of variance (and covariance) are identical systems, he would mutter something like "Of course—general linear model," and you might have trouble maintaining his attention. If you should say this to a typical psychologist, you would be met with incredulity, or worse. Yet it is true, and in its truth lie possibilities for more relevant and therefore more powerful research data.

Cohen (1968)

History

Multiple Regression

- introduced c. 1900 in biological and behavioural sciences
- aligned to "natural variation" in observations
- tells us that means (ar y) are related to groups (g_1,g_2,\ldots,g_n)
- both produce F-ratios, discussed in different language, but identical

ANOVA

- introduced c. 1920 in agricultural research
- aligned to experimentation and manipulation
- tells us that groups (g_1,g_2,\ldots,g_n) have different means (ar y)

Im vs Traditional ANOVA

regression, binary predictor

summary(lm(height ~ eyecolour, data = usmr))

##

lm(formula = height ~ eyecolour, data = usmr) ## Coefficients: Estimate Std. Error t value Pr(>|t|) ## ## (Intercept) 170.254 2.183 77.99 <2e-16 *** ## eyecolourbrown -3.682 2.609 -1.410.16 ## eyecolourgreen 2.717 4.125 0.66 0.51 ## eyecolourgrey -0.254 9.515 -0.03 0.98 ## eyecolourhazel -2.404 3.935 -0.61 0.54 ## eyecolourother -4.834 5.775 -0.84 0.41 ## ---## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 9.26 on 73 degrees of freedom (1 observation deleted due to missingness) ## ## Multiple R-squared: 0.0563, Adjusted R-squared: -0.00837 ## F-statistic: 0.871 on 5 and 73 DF, p-value: 0.505

anova

summary(aov(height ~ eyecolour, data = usmr))

##		Df	Sum Sq	Mean Sq F	value	Pr(>F)
##	eyecolour	5	373	74.7	0.87	0.51
##	Residuals	73	6261	85.8		
##	1 observati	on d	deleted	due to mi	issingne	ess

Why Teach LM/Regression?

- LM has less restrictive assumptions
 - $\circ~$ especially true for unbalanced designs/missing data
- LM is far better at dealing with covariates
 - $\circ~$ can arbitrarily mix continuous and discrete predictors
- LM is the gateway to other powerful tools
 - \circ mixed models and factor analysis (\rightarrow MSMR)
 - structural equation models

End

