

#### Week 10: The Generalized Linear Model

#### Univariate Statistics and Methodology using R

Department of Psychology The University of Edinburgh

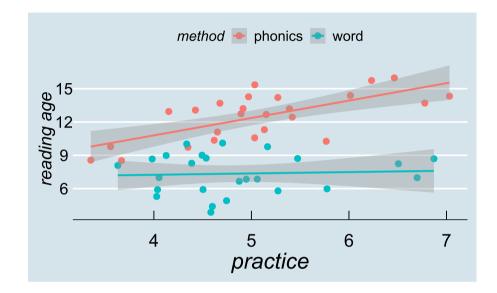
### Part 1

**Bigger and Better** 



| age    | hrs_wk | method  | R_AGE  |
|--------|--------|---------|--------|
| 10.115 | 4.971  | phonics | 14.272 |
| 9.940  | 4.677  | phonics | 13.692 |
| 6.060  | 4.619  | phonics | 10.353 |
| 9.269  | 4.894  | phonics | 12.744 |
| 10.991 | 5.035  | phonics | 15.353 |
| 6.535  | 5.272  | word    | 5.798  |
| 8.150  | 6.871  | word    | 8.691  |
| 7.941  | 4.053  | word    | 6.988  |
| 8.233  | 5.474  | word    | 8.713  |
| 6.219  | 4.038  | word    | 5.908  |







| age    | hrs_wk | method  | R_AGE  |
|--------|--------|---------|--------|
| 10.115 | 4.971  | phonics | 14.272 |
| 9.940  | 4.677  | phonics | 13.692 |
| 6.060  | 4.619  | phonics | 10.353 |
| 9.269  | 4.894  | phonics | 12.744 |
| 10.991 | 5.035  | phonics | 15.353 |
| 6.535  | 5.272  | word    | 5.798  |
| 8.150  | 6.871  | word    | 8.691  |
| 7.941  | 4.053  | word    | 6.988  |
| 8.233  | 5.474  | word    | 8.713  |
| 6.219  | 4.038  | word    | 5.908  |



R\_AGE -15 -10

### **Bigger and Better**

• easy to build models including more predictors

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_k x_{ki} + \ldots + b_m x_{1i} x_{2i} + b_{m+1} x_{2i} x_{3i} + \ldots$ 

• for example

mod.mm <- lm(R\_AGE ~ age + hrs\_wk + method + hrs\_wk:method + age:hrs\_wk, data=reading)</pre>

# **Bigger and Better**

• easy to build models including more predictors

 ${\hat y}_i = b_0 + b_1 x_{1i} + b_2 x_{2i} + \ldots + b_k x_{ki} + \ldots + b_m x_{1i} x_{2i} + b_{m+1} x_{2i} x_{3i} + \ldots$ 

• for example

mod.mm <- lm(R\_AGE ~ age + hrs\_wk + method + hrs\_wk:method + age:hrs\_wk, data=reading)</pre>

- NB., order of predictors can matter (judgement is important)
  - if we conduct anova (mod.mm) we test incremental addition of each predictor
- first question: is it worth it building such a complex model?

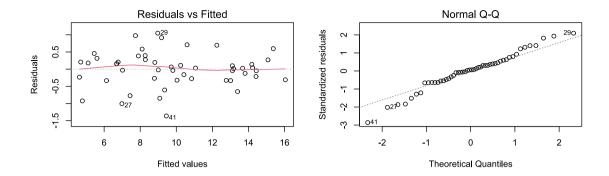
#### **Does Each New Predictor Improve Fit?**

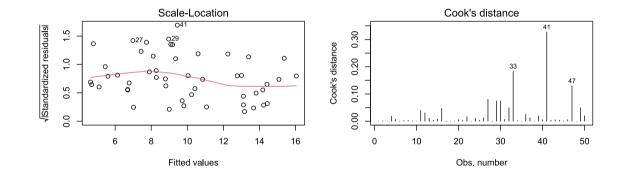
anova(mod.mm)

## Analysis of Variance Table ## ## Response: R\_AGE Df Sum Sq Mean Sq F value Pr(>F) ## 1 166.0 166.0 599.36 < 2e-16 \*\*\* ## age ## hrs\_wk 1 35.7 35.7 128.99 1.1e-14 \*\*\* ## method 1 300.2 300.2 1083.79 < 2e-16 \*\*\* ## hrs\_wk:method 1 2.8 2.8 10.25 0.0025 \*\* ## age:hrs wk 1 0.1 0.1 0.27 0.6078 ## Residuals 44 12.2 0.3 ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1

• adding age:hrs\_wk doesn't improve the model any further over a model without it

mod.mm <- update(mod.mm, ~ . -age:hrs\_wk)
# equivalent
# mod.mm <- lm(R\_AGE ~ age + hrs\_wk + method + hrs\_wk:method, data=reading)</pre>





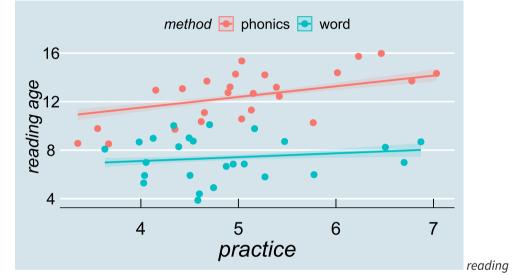
#### The Model

## ## Call: ## lm(formula = R\_AGE ~ age + hrs\_wk + method + hrs\_wk:method, data = reading) ## ## Residuals: Min 10 Median 30 Max ## ## -1.3637 -0.2737 0.0288 0.2538 1.0491 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 0.6849 0.6114 1.12 0.2686 ## age 0.9076 0.0428 21.22 < 2e-16 \*\*\* ## hrs\_wk 0.8785 0.1177 7.46 2.1e-09 \*\*\* ## methodword -2.16430.8724 -2.48 0.0169 \* ## hrs\_wk:methodword -0.5599 0.1734 -3.23 0.0023 \*\* ## ---## Signif. codes: 0 '\*\*\*' 0.001 '\*\*' 0.01 '\*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.522 on 45 degrees of freedom ## Multiple R-squared: 0.976, Adjusted R-squared: 0.974 ## F-statistic: 463 on 4 and 45 DF, p-value: <2e-16

• coef\_as\_pred.R

#### The Model

- not always convenient to draw 3d models!
- graphs can show "interesting" results
- here, age doesn't interact with anything
- so show plot for *mean age* (or some other meaningful value)



age predicted by practice hours per week for children of average age

#### End of Part 1

#### Part 2

#### Probability, Odds, Log-Odds

#### Aliens



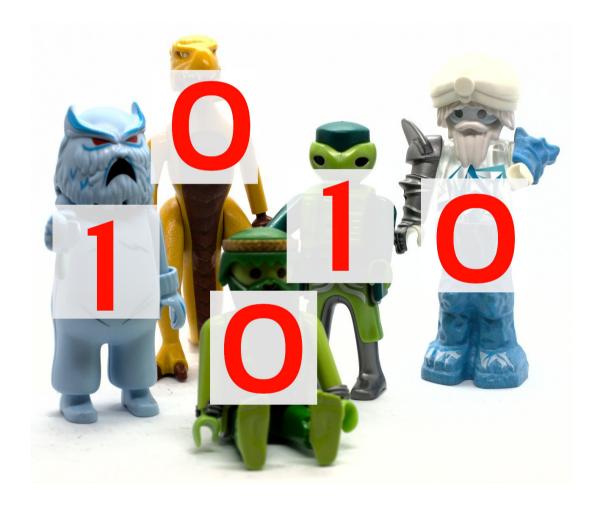
# A Binary World



# A Binary World



# A Binary World

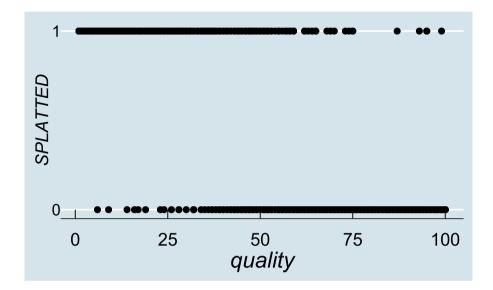


# 1,000 Aliens

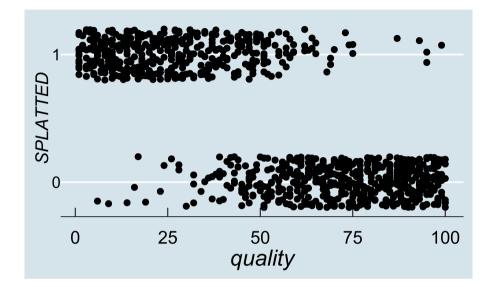
| id                         | quality | SPLATTED |
|----------------------------|---------|----------|
| The Great Odorjan of Erpod | 84      | 0        |
| Hapetox Bron               | 34      | 1        |
| Loorn Molzeks              | 92      | 0        |
| Ba'lite Adrflen            | 49      | 1        |
| Tedlambo Garilltet         | 93      | 0        |
| Goraveola Grellorm         | 5       | 1        |
| Colonel Garqun             | 55      | 1        |
| Bosgogo Lurcat             | 64      | 1        |
| Osajed Voplily             | 45      | 0        |
| Subcommander Edorop        | 90      | 0        |
|                            |         |          |

- quality = quality of singing
- SPLATTED = whether splatted (1 or 0)

### 1,000 Aliens



#### 1,000 Aliens



• using geom\_jitter()

# Binomial Regression, Conceptually

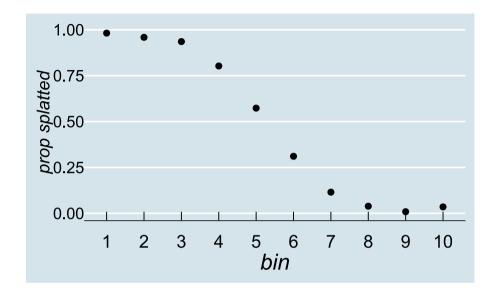
- each alien either gets splatted or doesn't
  - $\circ~$  each observation is either a 1 or a 0  $\,$
- underlyingly, there's a binomial distribution
- for each value of "quality of singing" there's a *probability* of getting splatted

# Binomial Regression, Conceptually

- each alien either gets splatted or doesn't
  - $\circ~$  each observation is either a 1 or a 0 ~
- underlyingly, there's a binomial distribution
- for each value of "quality of singing" there's a *probability* of getting splatted
- for each alien, the outcome is deterministic
- but it's the *probability* we are ultimately interested in
- we can approximate it by binning our data...

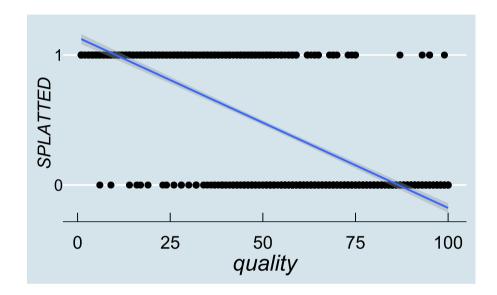
#### **Binned Data**

singers <- singers %>%
 mutate(bin=cut\_interval(quality,10))
dat <- singers %>% group\_by(bin) %>%
 summarise(prop=mean(SPLATTED))
dat %>% ggplot(aes(x=bin,y=prop)) +
 xlab("bin") + ylab("prop splatted") +
 geom\_point(size=3) +
 scale\_x\_discrete(label=1:10)

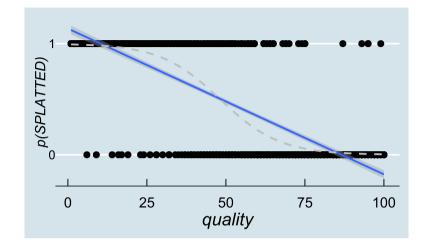


#### **Best Fit Lines**

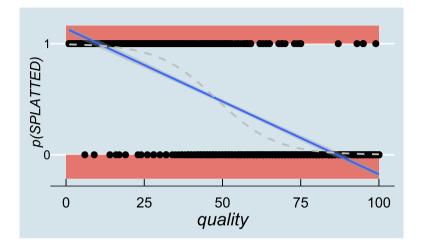
- we can fit our data using a standard linear model
- but there's something very wrong...



### The Problem with Probability

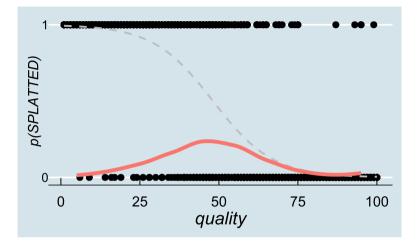


### The Problem with Probability



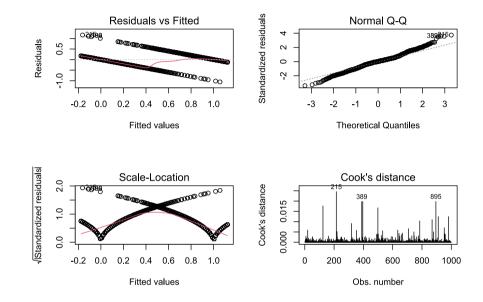
• a *linear* model predicts impossible values because probability isn't linear; it's asymptotic

### The Problem with Probability



• variance *necessarily* covaries with probability

#### Assumptions



# Probability and Odds

$$ext{odds}(y) = rac{p(y)}{1-p(y)}$$

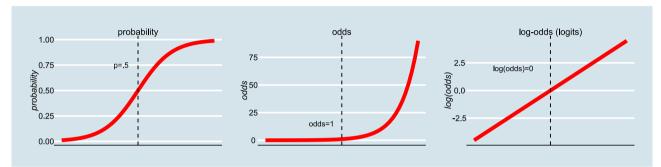
 $0 <math>0 < \mathrm{odds} < \infty$ 

# Probability and Odds

| $\mathrm{odds}(y) = rac{p(y)}{1-p(y)}$ |                  | $0 0 < \mathrm{odds} < \infty$ |  |
|-----------------------------------------|------------------|--------------------------------|--|
|                                         | p(y)             | $\mathrm{odds}(y)$             |  |
| throw heads                             | $\frac{1}{2}$    | $\frac{1}{1}$                  |  |
| throw 8 from two dice                   | $\frac{5}{36}$   | $\frac{5}{31}$                 |  |
| get splatted                            | $\frac{99}{100}$ | $\frac{99}{1}$                 |  |

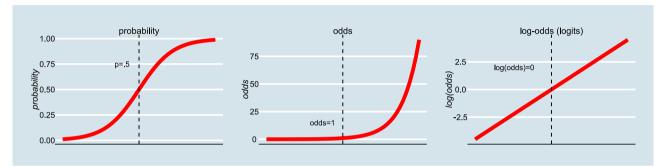
# Probability and Log-Odds

- $\log(0) = -\infty; \log(\infty) = +\infty$
- $\log(1) = 0$  where odds of 1 are exactly 50:50 ( p = 0.5 )



# Probability and Log-Odds

- $\log(0) = -\infty; \log(\infty) = +\infty$
- $\log(1) = 0$  where odds of 1 are exactly 50:50 ( p = 0.5 )



- if log-odds are *less than zero*, the odds go down (multiply by <1)
- if log-odds are *more than zero*, the odds go up (multiply by >1)
- high odds = high probability

#### End of Part 2

#### Part 3

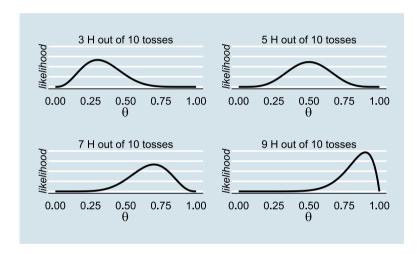
#### The Generalized Linear Model

# The Generalized Linear Model

- generalises the linear model using mapping functions
- coefficients are in logit (log-odds) units
- fit using maximum likelihood
- coefficients use Wald's z instead of t

### Likelihood





• extent to which a sample provides support for a model ( MLE\_bend\_in\_the\_road.R).

# The Generalized Linear Model

- generalises the linear model using mapping functions
- coefficients are in logit (log-odds) units
- fit using maximum likelihood
- coefficients use Wald's *z* instead of *t*
- but actually it's all quite straightforward...

# Alien Singer Splat Probability

| id                         | quality | SPLATTED |
|----------------------------|---------|----------|
| The Great Odorjan of Erpod | 84      | 0        |
| Hapetox Bron               | 34      | 1        |
| Loorn Molzeks              | 92      | 0        |
| Ba'lite Adrflen            | 49      | 1        |
| Tedlambo Garilltet         | 93      | 0        |
| Goraveola Grellorm         | 5       | 1        |
| Colonel Garqun             | 55      | 1        |
| Bosgogo Lurcat             | 64      | 1        |
| Osajed Voplily             | 45      | 0        |
| Subcommander Edorop        | 90      | 0        |
|                            |         |          |

- use glm() \* instead of lm()
- specify link function with family = binomial \*\*

\* can take a 2-level factor DV
\*\* family="binomial" and
family=binomial(link="logit") also work

# Evaluating the Model

- NB., no statistical test done by default
- deviance compares the likelihood of the new model to that of the previous model
  - a generalisation of sums of squares
  - *lower* "residual deviance" is good (*a bit like Residual Sums of Squares*)

summary(mod.b)

## ## Call: glm(formula = SPLATTED ~ quality, family = binomial, data = singers) ## ## ## Deviance Residuals: Min 1Q Median Мах ## ЗQ ## -2.987 -0.374 -0.113 0.333 3.279 ## . . . ## . . . ## . . . Null deviance: 1377.06 on 999 degrees of freedom ## ## Residual deviance: 577.29 on 998 degrees of freedom



## Null deviance: 1377.06 on 999 degrees of freedom
## Residual deviance: 577.29 on 998 degrees of freedom

- deviance is  $-2 \times$  the log-likelihood ratio of the reduced compared to the full model
- *higher* "deviance" is good (*a bit like F*)

mod.n <- glm(SPLATTED~1, family=binomial, data=singers)</pre>

 logLik(mod.n)
 -2\*logLik(mod.n)

 ## 'log Lik.' -688.5 (df=1)
 ## 'log Lik.' 1377 (df=1)

 logLik(mod.b)
 -2\*logLik(mod.b)

 ## 'log Lik.' -288.6 (df=2)
 ## 'log Lik.' 577.3 (df=2)

 -2 \* (logLik(mod.n)-logLik(mod.b))
 ## 'log Lik.' 799.8 (df=1)

# Evaluating the Model

- model deviance maps to the  $\chi^2$  distribution
- can specify a  $\chi^2$  test to statistically evaluate model in a similar way to F ratio

```
anova(mod.b, test="Chisq")
## Analysis of Deviance Table
##
## Model: binomial, link: logit
##
## Response: SPLATTED
##
## Terms added sequentially (first to last)
##
##
##
          Df Deviance Resid. Df Resid. Dev Pr(>Chi)
## NULL
                            999
                                       1377
## quality 1
                  800
                             998
                                        577 <2e-16 ***
##
  ____
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
```

#### **Model Coefficients**

```
##
## Call:
## glm(formula = SPLATTED ~ quality, family = binomial, data = singers)
##
## Deviance Residuals:
              1Q Median
##
     Min
                              ЗQ
                                     Мах
## -2.987 -0.374 -0.113 0.333 3.279
##
## Coefficients:
              Estimate Std. Error z value Pr(>|z|)
##
## (Intercept) 5.08191
                         0.33410
                                   15.2 <2e-16 ***
## guality
              -0.10557
                          0.00642
                                  -16.5 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
      Null deviance: 1377.06 on 999 degrees of freedom
##
## Residual deviance: 577.29 on 998 degrees of freedom
## AIC: 581.3
##
## Number of Fisher Scoring iterations: 6
```

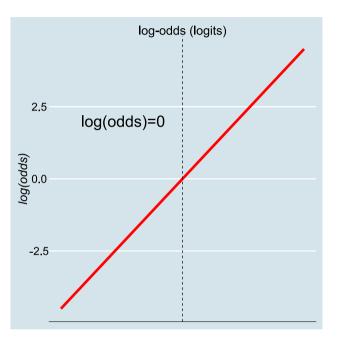
### **Model Coefficients**

coefficients are in logits (= log-odds)

## ...
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.08191 0.33410 15.2 <2e-16 \*\*\*
## quality -0.10557 0.00642 -16.5 <2e-16 \*\*\*
## ...</pre>

• zero = "50/50" (odds of 1)

• value below zero: probability of being splatted *decreases* as quality increases



# Log-Odds, Odds, and Probability

## ...
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 5.08191 0.33410 15.2 <2e-16 \*\*\*
## quality -0.10557 0.00642 -16.5 <2e-16 \*\*\*
## ...</pre>

#### quality = 50

| • $log-odds: 5.08 + -0.11 \cdot 50 = -0.42$     | ${\hat y}_i = b_0 + b_1 x_i$               |
|-------------------------------------------------|--------------------------------------------|
| • odds: $e^{-0.42} = 0.657$                     | $\mathrm{odds}=e^{\hat{y}_i}$              |
| • probability: $\frac{0.657}{1+0.657} = 0.3965$ | $p = rac{\mathrm{odds}}{1+\mathrm{odds}}$ |

# A Useful Function

- intuitive to think in probability
- useful to write a function which takes a value in logits l and converts it to a probability p

```
l2p <- function(logits) {
  odds = exp(logits)
  prob = odds/(1+odds)
  return(prob)
}</pre>
```

• singing qualities 50 and 51

l2p(5.08+-0.11\*50)

## [1] 0.3965

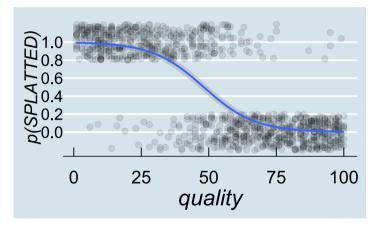
l2p(5.08+-0.11\*51)

## [1] 0.3705

| <ul> <li>singing qualities 10 and 11</li> </ul> |
|-------------------------------------------------|
| l2p(5.08+-0.11*10)                              |
| ## [1] 0.9817                                   |
| l2p(5.08+-0.11*11)                              |
| ## [1] 0.9796                                   |

## Representing the Model Graphically

singers %>% ggplot(aes(x=quality,y=SPLATTED)) +
ylab("p(SPLATTED)") +
geom\_jitter(size=3,width=0,height=.2,alpha=.1) +
geom\_smooth(method="glm",method.args=list(family=binomial)) +
scale\_y\_continuous(breaks=seq(0,1,by=.2))



### One Last Trick

- so far we've looked at
  - model *deviance* and  $\chi^2$  (similar to sums of squares and *F*)
  - model *coefficients* and how to map them to probability
- what about "explained variance" (similar to  $R^2$ )?
- no really good way of doing this, many proposals
- SPSS uses something called "accuracy" (how well does the model predict actual data?)
- not very informative, but good for learning R

#### Accuracy

• first, what does the model predict (in logit units)?

guess <- predict(mod.b) # in logit units</pre>

• if the chance of being splatted is more than .5 (logit > 0) call it a "splat"

```
guess <- ifelse(guess>0,1,0)
```

• how well do predicted splats match actual splats?

```
hits <- sum(guess == singers$SPLATTED)
hits/length(singers$SPLATTED)</pre>
```

## [1] 0.879

• present model "correctly predicts" 87.9% of the observations

# Other Types of Data

- logit regression is *one type* of GLM
- others make use of different link functions (through family=...)
- poisson: number of events in a time period
- inverse gaussian: time to reach some criterion

• ...

#### GLMs

#### **Predictor Variables**

#### • linear

- convertible to linear (use log() etc.)
- non-convertible (use contrasts() etc. to map)
- don't affect the choice of model

#### **Dependent Variables**

- linear
- convertible to linear (use log() etc.)
- non-convertible (use glm() with family=...)
- directly affect the choice of model

#### End

# Acknowledgements

• icons by Diego Lavecchia from the Noun Project