Multivariate Statistics and Methodology using R

Structural equation modeling

Aja Murray;

This week

Learning outcomes

SEM: bringing CFA and path analysis together

A structural equation model

Why use a SEM model?

BREAK 1

WELCOME BACK 1

A brief detour into reliability

\[Observed Score= True Score + Error\]

Internal consistency reliability

Cronbach’s alpha

\[\large \alpha\]

Omega

\[ \large \omega \]

Alpha and omega in R

Alpha and omega for our aggression subscales

library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
omega_verbal<-omega(agg.items[ ,c(1:5)], nfactors=1) ##omega for the verbal aggression factor (items 1-5)
## Loading required namespace: GPArotation
## Omega_h for 1 factor is not meaningful, just omega_t

omega() output

omega_verbal
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.87 
## G.6:                   0.84 
## Omega Hierarchical:    0.87 
## Omega H asymptotic:    1 
## Omega Total            0.87 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##          g  F1*   h2   u2 p2
## item1 0.72      0.51 0.49  1
## item2 0.80      0.64 0.36  1
## item3 0.73      0.53 0.47  1
## item4 0.69      0.47 0.53  1
## item5 0.85      0.72 0.28  1
## 
## With Sums of squares  of:
##   g F1* 
## 2.9 0.0 
## 
## general/max  Inf   max/min =   NaN
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 5  and the fit is  0 
## The number of observations was  1000  with Chi Square =  1.17  with prob <  0.95
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  0.01
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.005
## BIC =  -33.37
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0 
## The number of observations was  1000  with Chi Square =  1.17  with prob <  0.95
## The root mean square of the residuals is  0 
## The df corrected root mean square of the residuals is  0.01 
## 
## RMSEA index =  0  and the 10 % confidence intervals are  0 0.005
## BIC =  -33.37 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            0.94   0
## Multiple R square of scores with factors      0.88   0
## Minimum correlation of factor score estimates 0.76  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.87 0.87
## Omega general for total scores and subscales  0.87 0.87
## Omega group for total scores and subscales    0.00 0.00

Alpha and omega

omega_physical<-omega(agg.items[ ,c(6:10)], nfactors=1) ## calculate alpha and omega for the physical aggression factor 
## Omega_h for 1 factor is not meaningful, just omega_t

omega() output for physical aggression

omega_physical
## Omega 
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip, 
##     digits = digits, title = title, sl = sl, labels = labels, 
##     plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option, 
##     covar = covar)
## Alpha:                 0.89 
## G.6:                   0.87 
## Omega Hierarchical:    0.89 
## Omega H asymptotic:    1 
## Omega Total            0.89 
## 
## Schmid Leiman Factor loadings greater than  0.2 
##           g  F1*   h2   u2 p2
## item6  0.66      0.44 0.56  1
## item7  0.90      0.81 0.19  1
## item8  0.92      0.85 0.15  1
## item9  0.70      0.49 0.51  1
## item10 0.74      0.55 0.45  1
## 
## With Sums of squares  of:
##   g F1* 
## 3.1 0.0 
## 
## general/max  Inf   max/min =   NaN
## mean percent general =  1    with sd =  0 and cv of  0 
## Explained Common Variance of the general factor =  1 
## 
## The degrees of freedom are 5  and the fit is  0.01 
## The number of observations was  1000  with Chi Square =  6.81  with prob <  0.24
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.01
## RMSEA index =  0.019  and the 10 % confidence intervals are  0 0.051
## BIC =  -27.73
## 
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5  and the fit is  0.01 
## The number of observations was  1000  with Chi Square =  6.81  with prob <  0.24
## The root mean square of the residuals is  0.01 
## The df corrected root mean square of the residuals is  0.01 
## 
## RMSEA index =  0.019  and the 10 % confidence intervals are  0 0.051
## BIC =  -27.73 
## 
## Measures of factor score adequacy             
##                                                  g F1*
## Correlation of scores with factors            0.96   0
## Multiple R square of scores with factors      0.93   0
## Minimum correlation of factor score estimates 0.86  -1
## 
##  Total, General and Subset omega for each subset
##                                                  g  F1*
## Omega total for total scores and subscales    0.89 0.89
## Omega general for total scores and subscales  0.89 0.89
## Omega group for total scores and subscales    0.00 0.00

How to solve the problem of attenuation due to unreliability?

\[\frac{r_{xy}}{\sqrt{r_{xx}r_{yy}}}\]

BREAK 2

WELCOME BACK 2

Addressing attenuation due to unreliability with SEM

Fitting structural equation models

An example SEM model

Our model

Step 1: check the measurement models

CFA for aggression

##CFA for aggression

agg.CFA<-'Vagg=~agg1+agg2+agg3+agg4+agg5
  
   Pagg=~agg6+agg7+agg8+agg9+agg10
   
   Vagg~~Pagg'

agg.CFA.est<-cfa(agg.CFA, data=agg.PR.data)
summary(agg.CFA.est, fit.measures=T, standardized=T)
## lavaan 0.6.15 ended normally after 30 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        21
## 
##   Number of observations                           570
## 
## Model Test User Model:
##                                                       
##   Test statistic                                46.611
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.073
## 
## Model Test Baseline Model:
## 
##   Test statistic                              3343.183
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996
##   Tucker-Lewis Index (TLI)                       0.995
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -6599.772
##   Loglikelihood unrestricted model (H1)      -6576.466
##                                                       
##   Akaike (AIC)                               13241.543
##   Bayesian (BIC)                             13332.802
##   Sample-size adjusted Bayesian (SABIC)      13266.136
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.026
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.042
##   P-value H_0: RMSEA <= 0.050                    0.994
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.021
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Vagg =~                                                               
##     agg1              1.000                               0.756    0.737
##     agg2              1.145    0.059   19.279    0.000    0.866    0.830
##     agg3              0.910    0.058   15.721    0.000    0.688    0.680
##     agg4              0.913    0.058   15.620    0.000    0.691    0.676
##     agg5              1.139    0.058   19.593    0.000    0.862    0.844
##   Pagg =~                                                               
##     agg6              1.000                               0.691    0.678
##     agg7              1.395    0.073   19.020    0.000    0.964    0.898
##     agg8              1.331    0.070   18.995    0.000    0.919    0.897
##     agg9              1.155    0.071   16.263    0.000    0.798    0.747
##     agg10             1.022    0.065   15.766    0.000    0.706    0.722
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Vagg ~~                                                               
##     Pagg              0.386    0.037   10.393    0.000    0.739    0.739
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .agg1              0.480    0.033   14.488    0.000    0.480    0.456
##    .agg2              0.340    0.027   12.380    0.000    0.340    0.312
##    .agg3              0.550    0.036   15.164    0.000    0.550    0.538
##    .agg4              0.567    0.037   15.204    0.000    0.567    0.543
##    .agg5              0.300    0.025   11.843    0.000    0.300    0.288
##    .agg6              0.560    0.036   15.707    0.000    0.560    0.540
##    .agg7              0.222    0.021   10.816    0.000    0.222    0.193
##    .agg8              0.206    0.019   10.917    0.000    0.206    0.196
##    .agg9              0.504    0.033   15.123    0.000    0.504    0.442
##    .agg10             0.458    0.030   15.374    0.000    0.458    0.479
##     Vagg              0.572    0.058    9.862    0.000    1.000    1.000
##     Pagg              0.477    0.053    8.943    0.000    1.000    1.000

CFA for peer rejection

##CFA for aggression

PR.CFA<-'PR=~PR1+PR2+PR3+PR4+PR5'
  

PR.CFA.est<-cfa(PR.CFA, data=agg.PR.data)
summary(PR.CFA.est, fit.measures=T, standardized=T)
## lavaan 0.6.15 ended normally after 24 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        10
## 
##   Number of observations                           570
## 
## Model Test User Model:
##                                                       
##   Test statistic                                 7.228
##   Degrees of freedom                                 5
##   P-value (Chi-square)                           0.204
## 
## Model Test Baseline Model:
## 
##   Test statistic                              1978.376
##   Degrees of freedom                                10
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.999
##   Tucker-Lewis Index (TLI)                       0.998
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -3097.913
##   Loglikelihood unrestricted model (H1)      -3094.298
##                                                       
##   Akaike (AIC)                                6215.825
##   Bayesian (BIC)                              6259.281
##   Sample-size adjusted Bayesian (SABIC)       6227.536
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.028
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.069
##   P-value H_0: RMSEA <= 0.050                    0.771
##   P-value H_0: RMSEA >= 0.080                    0.015
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.009
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PR =~                                                                 
##     PR1               1.000                               0.769    0.776
##     PR2               1.047    0.051   20.476    0.000    0.805    0.798
##     PR3               1.211    0.050   24.145    0.000    0.931    0.914
##     PR4               1.176    0.051   22.847    0.000    0.904    0.871
##     PR5               1.031    0.052   19.959    0.000    0.792    0.781
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .PR1               0.391    0.026   14.868    0.000    0.391    0.398
##    .PR2               0.370    0.025   14.536    0.000    0.370    0.364
##    .PR3               0.171    0.017   10.020    0.000    0.171    0.165
##    .PR4               0.259    0.021   12.521    0.000    0.259    0.241
##    .PR5               0.401    0.027   14.790    0.000    0.401    0.390
##     PR                0.591    0.055   10.783    0.000    1.000    1.000

Step 2: specify the SEM model

agg.PR.model<-'
# aggression measurement model
   Vagg=~agg1+agg2+agg3+agg4+agg5     
  
   Pagg=~agg6+agg7+agg8+agg9+agg10     
   
   Vagg~~Pagg
   
# peer rejection measurement model
   PR=~PR1+PR2+PR3+PR4+PR5

#structural part of the model

  PR~Vagg + Pagg        # Peer rejection is regressed on verbal and physical aggression'

Step 3: estimate the SEM model

agg.PR.est<-sem(agg.PR.model, data= agg.PR.data)

Step 4: evaluate the model

summary(agg.PR.est, fit.measures=T)
## lavaan 0.6.15 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        33
## 
##   Number of observations                           570
## 
## Model Test User Model:
##                                                       
##   Test statistic                               107.429
##   Degrees of freedom                                87
##   P-value (Chi-square)                           0.068
## 
## Model Test Baseline Model:
## 
##   Test statistic                              5508.400
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996
##   Tucker-Lewis Index (TLI)                       0.995
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9631.059
##   Loglikelihood unrestricted model (H1)      -9577.344
##                                                       
##   Akaike (AIC)                               19328.118
##   Bayesian (BIC)                             19471.524
##   Sample-size adjusted Bayesian (SABIC)      19366.763
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.020
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.032
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Vagg =~                                             
##     agg1              1.000                           
##     agg2              1.146    0.059   19.313    0.000
##     agg3              0.909    0.058   15.731    0.000
##     agg4              0.914    0.058   15.659    0.000
##     agg5              1.138    0.058   19.605    0.000
##   Pagg =~                                             
##     agg6              1.000                           
##     agg7              1.397    0.074   18.982    0.000
##     agg8              1.332    0.070   18.948    0.000
##     agg9              1.161    0.071   16.281    0.000
##     agg10             1.025    0.065   15.762    0.000
##   PR =~                                               
##     PR1               1.000                           
##     PR2               1.048    0.051   20.549    0.000
##     PR3               1.212    0.050   24.258    0.000
##     PR4               1.172    0.051   22.823    0.000
##     PR5               1.031    0.052   20.012    0.000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   PR ~                                                
##     Vagg              0.241    0.070    3.442    0.001
##     Pagg              0.319    0.077    4.156    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Vagg ~~                                             
##     Pagg              0.386    0.037   10.390    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .agg1              0.480    0.033   14.509    0.000
##    .agg2              0.339    0.027   12.418    0.000
##    .agg3              0.551    0.036   15.183    0.000
##    .agg4              0.566    0.037   15.211    0.000
##    .agg5              0.301    0.025   11.929    0.000
##    .agg6              0.562    0.036   15.723    0.000
##    .agg7              0.223    0.020   10.898    0.000
##    .agg8              0.208    0.019   11.035    0.000
##    .agg9              0.500    0.033   15.115    0.000
##    .agg10             0.457    0.030   15.379    0.000
##    .PR1               0.391    0.026   14.913    0.000
##    .PR2               0.368    0.025   14.578    0.000
##    .PR3               0.169    0.017   10.115    0.000
##    .PR4               0.264    0.021   12.745    0.000
##    .PR5               0.400    0.027   14.835    0.000
##     Vagg              0.572    0.058    9.870    0.000
##     Pagg              0.476    0.053    8.927    0.000
##    .PR                0.450    0.043   10.596    0.000

Step 5: interpret the model

summary(agg.PR.est, fit.measures=T, standardized=T)
## lavaan 0.6.15 ended normally after 35 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of model parameters                        33
## 
##   Number of observations                           570
## 
## Model Test User Model:
##                                                       
##   Test statistic                               107.429
##   Degrees of freedom                                87
##   P-value (Chi-square)                           0.068
## 
## Model Test Baseline Model:
## 
##   Test statistic                              5508.400
##   Degrees of freedom                               105
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.996
##   Tucker-Lewis Index (TLI)                       0.995
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -9631.059
##   Loglikelihood unrestricted model (H1)      -9577.344
##                                                       
##   Akaike (AIC)                               19328.118
##   Bayesian (BIC)                             19471.524
##   Sample-size adjusted Bayesian (SABIC)      19366.763
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.020
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.032
##   P-value H_0: RMSEA <= 0.050                    1.000
##   P-value H_0: RMSEA >= 0.080                    0.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.023
## 
## Parameter Estimates:
## 
##   Standard errors                             Standard
##   Information                                 Expected
##   Information saturated (h1) model          Structured
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Vagg =~                                                               
##     agg1              1.000                               0.757    0.738
##     agg2              1.146    0.059   19.313    0.000    0.867    0.830
##     agg3              0.909    0.058   15.731    0.000    0.688    0.680
##     agg4              0.914    0.058   15.659    0.000    0.692    0.677
##     agg5              1.138    0.058   19.605    0.000    0.861    0.843
##   Pagg =~                                                               
##     agg6              1.000                               0.690    0.677
##     agg7              1.397    0.074   18.982    0.000    0.963    0.898
##     agg8              1.332    0.070   18.948    0.000    0.918    0.896
##     agg9              1.161    0.071   16.281    0.000    0.800    0.749
##     agg10             1.025    0.065   15.762    0.000    0.707    0.723
##   PR =~                                                                 
##     PR1               1.000                               0.769    0.776
##     PR2               1.048    0.051   20.549    0.000    0.806    0.799
##     PR3               1.212    0.050   24.258    0.000    0.932    0.915
##     PR4               1.172    0.051   22.823    0.000    0.902    0.869
##     PR5               1.031    0.052   20.012    0.000    0.793    0.782
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   PR ~                                                                  
##     Vagg              0.241    0.070    3.442    0.001    0.237    0.237
##     Pagg              0.319    0.077    4.156    0.000    0.286    0.286
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Vagg ~~                                                               
##     Pagg              0.386    0.037   10.390    0.000    0.739    0.739
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .agg1              0.480    0.033   14.509    0.000    0.480    0.456
##    .agg2              0.339    0.027   12.418    0.000    0.339    0.311
##    .agg3              0.551    0.036   15.183    0.000    0.551    0.538
##    .agg4              0.566    0.037   15.211    0.000    0.566    0.542
##    .agg5              0.301    0.025   11.929    0.000    0.301    0.289
##    .agg6              0.562    0.036   15.723    0.000    0.562    0.542
##    .agg7              0.223    0.020   10.898    0.000    0.223    0.194
##    .agg8              0.208    0.019   11.035    0.000    0.208    0.197
##    .agg9              0.500    0.033   15.115    0.000    0.500    0.439
##    .agg10             0.457    0.030   15.379    0.000    0.457    0.478
##    .PR1               0.391    0.026   14.913    0.000    0.391    0.398
##    .PR2               0.368    0.025   14.578    0.000    0.368    0.362
##    .PR3               0.169    0.017   10.115    0.000    0.169    0.163
##    .PR4               0.264    0.021   12.745    0.000    0.264    0.245
##    .PR5               0.400    0.027   14.835    0.000    0.400    0.389
##     Vagg              0.572    0.058    9.870    0.000    1.000    1.000
##     Pagg              0.476    0.053    8.927    0.000    1.000    1.000
##    .PR                0.450    0.043   10.596    0.000    0.762    0.762

Making model modifications in SEM

Check modification indices and expected parameter changes

modindices(agg.PR.est, sort=T)
##       lhs op   rhs     mi    epc sepc.lv sepc.all sepc.nox
## 68   agg1 ~~  agg3 10.595 -0.082  -0.082   -0.160   -0.160
## 95   agg3 ~~  agg5  8.947  0.069   0.069    0.170    0.170
## 137  agg7 ~~  agg9  7.264 -0.056  -0.056   -0.167   -0.167
## 45   Vagg =~   PR4  6.615 -0.102  -0.077   -0.075   -0.075
## 102  agg3 ~~   PR2  5.852  0.051   0.051    0.113    0.113
## 65     PR =~  agg9  5.242  0.112   0.086    0.081    0.081
## 131  agg6 ~~   PR1  4.855  0.047   0.047    0.101    0.101
## 123  agg5 ~~   PR2  4.643 -0.037  -0.037   -0.112   -0.112
## 119  agg5 ~~  agg8  4.337 -0.031  -0.031   -0.122   -0.122
## 169   PR3 ~~   PR4  4.283  0.038   0.038    0.180    0.180
## 106  agg4 ~~  agg5  4.227 -0.048  -0.048   -0.116   -0.116
## 167   PR2 ~~   PR4  4.102 -0.036  -0.036   -0.117   -0.117
## 104  agg3 ~~   PR4  4.019 -0.038  -0.038   -0.099   -0.099
## 51   Pagg =~  agg5  3.541 -0.142  -0.098   -0.096   -0.096
## 50   Pagg =~  agg4  3.537  0.161   0.111    0.108    0.108
## 160 agg10 ~~   PR4  3.301  0.031   0.031    0.090    0.090
## 168   PR2 ~~   PR5  3.158  0.034   0.034    0.089    0.089
## 117  agg5 ~~  agg6  3.095 -0.036  -0.036   -0.088   -0.088
## 170   PR3 ~~   PR5  3.041 -0.031  -0.031   -0.117   -0.117
## 72   agg1 ~~  agg7  2.948 -0.030  -0.030   -0.093   -0.093
## 74   agg1 ~~  agg9  2.910  0.039   0.039    0.080    0.080
## 140  agg7 ~~   PR2  2.806  0.026   0.026    0.090    0.090
## 118  agg5 ~~  agg7  2.711  0.025   0.025    0.097    0.097
## 154  agg9 ~~   PR3  2.622  0.026   0.026    0.089    0.089
## 141  agg7 ~~   PR3  2.592 -0.020  -0.020   -0.101   -0.101
## 39   Vagg =~  agg8  2.564 -0.095  -0.072   -0.070   -0.070
## 92   agg2 ~~   PR4  2.508 -0.026  -0.026   -0.085   -0.085
## 88   agg2 ~~ agg10  2.378 -0.030  -0.030   -0.077   -0.077
## 124  agg5 ~~   PR3  2.238  0.021   0.021    0.091    0.091
## 44   Vagg =~   PR3  2.209  0.053   0.040    0.040    0.040
## 47   Pagg =~  agg1  2.199  0.121   0.084    0.081    0.081
## 144  agg8 ~~  agg9  2.193  0.029   0.029    0.091    0.091
## 93   agg2 ~~   PR5  1.966  0.026   0.026    0.071    0.071
## 62     PR =~  agg6  1.832 -0.069  -0.053   -0.052   -0.052
## 146  agg8 ~~   PR1  1.649 -0.019  -0.019   -0.068   -0.068
## 40   Vagg =~  agg9  1.613  0.094   0.071    0.067    0.067
## 38   Vagg =~  agg7  1.415  0.074   0.056    0.052    0.052
## 153  agg9 ~~   PR2  1.410 -0.024  -0.024   -0.056   -0.056
## 64     PR =~  agg8  1.307 -0.043  -0.033   -0.032   -0.032
## 156  agg9 ~~   PR5  1.255  0.023   0.023    0.052    0.052
## 37   Vagg =~  agg6  1.218 -0.084  -0.064   -0.063   -0.063
## 99   agg3 ~~  agg9  1.215 -0.027  -0.027   -0.051   -0.051
## 138  agg7 ~~ agg10  1.164  0.021   0.021    0.065    0.065
## 60     PR =~  agg4  1.132  0.055   0.042    0.042    0.042
## 107  agg4 ~~  agg6  1.119  0.027   0.027    0.048    0.048
## 125  agg5 ~~   PR4  1.091  0.016   0.016    0.057    0.057
## 163   PR1 ~~   PR3  1.054 -0.018  -0.018   -0.068   -0.068
## 75   agg1 ~~ agg10  1.050  0.022   0.022    0.048    0.048
## 122  agg5 ~~   PR1  1.017 -0.018  -0.018   -0.052   -0.052
## 97   agg3 ~~  agg7  0.976  0.018   0.018    0.052    0.052
## 132  agg6 ~~   PR2  0.925 -0.020  -0.020   -0.044   -0.044
## 48   Pagg =~  agg2  0.906 -0.074  -0.051   -0.049   -0.049
## 61     PR =~  agg5  0.898 -0.042  -0.032   -0.031   -0.031
## 126  agg5 ~~   PR5  0.865 -0.017  -0.017   -0.048   -0.048
## 101  agg3 ~~   PR1  0.855  0.020   0.020    0.043    0.043
## 55   Pagg =~   PR4  0.844 -0.040  -0.027   -0.026   -0.026
## 91   agg2 ~~   PR3  0.770  0.013   0.013    0.052    0.052
## 53   Pagg =~   PR2  0.687  0.039   0.027    0.027    0.027
## 66     PR =~ agg10  0.651  0.037   0.029    0.029    0.029
## 113  agg4 ~~   PR2  0.650  0.017   0.017    0.038    0.038
## 70   agg1 ~~  agg5  0.615  0.018   0.018    0.047    0.047
## 133  agg6 ~~   PR3  0.593 -0.013  -0.013   -0.042   -0.042
## 71   agg1 ~~  agg6  0.588  0.018   0.018    0.035    0.035
## 105  agg3 ~~   PR5  0.569 -0.016  -0.016   -0.035   -0.035
## 115  agg4 ~~   PR4  0.536 -0.014  -0.014   -0.036   -0.036
## 134  agg6 ~~   PR4  0.515 -0.013  -0.013   -0.035   -0.035
## 130  agg6 ~~ agg10  0.505 -0.017  -0.017   -0.033   -0.033
## 159 agg10 ~~   PR3  0.476 -0.010  -0.010   -0.038   -0.038
## 73   agg1 ~~  agg8  0.457  0.011   0.011    0.036    0.036
## 82   agg2 ~~  agg4  0.417  0.016   0.016    0.036    0.036
## 145  agg8 ~~ agg10  0.405 -0.012  -0.012   -0.038   -0.038
## 158 agg10 ~~   PR2  0.399 -0.012  -0.012   -0.029   -0.029
## 76   agg1 ~~   PR1  0.394  0.013   0.013    0.030    0.030
## 164   PR1 ~~   PR4  0.384  0.011   0.011    0.035    0.035
## 152  agg9 ~~   PR1  0.375 -0.013  -0.013   -0.029   -0.029
## 147  agg8 ~~   PR2  0.362  0.009   0.009    0.032    0.032
## 128  agg6 ~~  agg8  0.344  0.011   0.011    0.034    0.034
## 81   agg2 ~~  agg3  0.315 -0.013  -0.013   -0.031   -0.031
## 150  agg8 ~~   PR5  0.297 -0.008  -0.008   -0.029   -0.029
## 121  agg5 ~~ agg10  0.297  0.010   0.010    0.028    0.028
## 112  agg4 ~~   PR1  0.273  0.011   0.011    0.024    0.024
## 129  agg6 ~~  agg9  0.267  0.013   0.013    0.024    0.024
## 139  agg7 ~~   PR1  0.258  0.008   0.008    0.027    0.027
## 79   agg1 ~~   PR4  0.244 -0.009  -0.009   -0.025   -0.025
## 151  agg9 ~~ agg10  0.238 -0.011  -0.011   -0.023   -0.023
## 109  agg4 ~~  agg8  0.235  0.009   0.009    0.026    0.026
## 67   agg1 ~~  agg2  0.220  0.011   0.011    0.027    0.027
## 110  agg4 ~~  agg9  0.175  0.010   0.010    0.019    0.019
## 127  agg6 ~~  agg7  0.172  0.008   0.008    0.024    0.024
## 46   Vagg =~   PR5  0.165  0.018   0.014    0.014    0.014
## 43   Vagg =~   PR2  0.156  0.017   0.013    0.013    0.013
## 49   Pagg =~  agg3  0.141  0.032   0.022    0.022    0.022
## 57     PR =~  agg1  0.126  0.017   0.013    0.013    0.013
## 116  agg4 ~~   PR5  0.118  0.008   0.008    0.016    0.016
## 165   PR1 ~~   PR5  0.117  0.007   0.007    0.017    0.017
## 56   Pagg =~   PR5  0.116  0.017   0.012    0.011    0.011
## 52   Pagg =~   PR1  0.111  0.016   0.011    0.011    0.011
## 42   Vagg =~   PR1  0.101  0.014   0.011    0.011    0.011
## 136  agg7 ~~  agg8  0.090  0.006   0.006    0.029    0.029
## 89   agg2 ~~   PR1  0.088 -0.005  -0.005   -0.015   -0.015
## 83   agg2 ~~  agg5  0.078  0.007   0.007    0.021    0.021
## 41   Vagg =~ agg10  0.063  0.018   0.013    0.014    0.014
## 157 agg10 ~~   PR1  0.056  0.005   0.005    0.011    0.011
## 54   Pagg =~   PR3  0.055 -0.009  -0.006   -0.006   -0.006
## 90   agg2 ~~   PR2  0.054 -0.004  -0.004   -0.012   -0.012
## 96   agg3 ~~  agg6  0.051 -0.006  -0.006   -0.010   -0.010
## 166   PR2 ~~   PR3  0.045  0.004   0.004    0.015    0.015
## 149  agg8 ~~   PR4  0.045  0.003   0.003    0.012    0.012
## 100  agg3 ~~ agg10  0.044  0.005   0.005    0.010    0.010
## 120  agg5 ~~  agg9  0.040 -0.004  -0.004   -0.010   -0.010
## 161 agg10 ~~   PR5  0.037 -0.004  -0.004   -0.009   -0.009
## 85   agg2 ~~  agg7  0.032  0.003   0.003    0.010    0.010
## 111  agg4 ~~ agg10  0.031  0.004   0.004    0.008    0.008
## 108  agg4 ~~  agg7  0.027 -0.003  -0.003   -0.009   -0.009
## 84   agg2 ~~  agg6  0.023 -0.003  -0.003   -0.007   -0.007
## 63     PR =~  agg7  0.018 -0.005  -0.004   -0.004   -0.004
## 94   agg3 ~~  agg4  0.016 -0.003  -0.003   -0.006   -0.006
## 142  agg7 ~~   PR4  0.015 -0.002  -0.002   -0.007   -0.007
## 155  agg9 ~~   PR4  0.015  0.002   0.002    0.006    0.006
## 87   agg2 ~~  agg9  0.014  0.002   0.002    0.006    0.006
## 135  agg6 ~~   PR5  0.014 -0.003  -0.003   -0.005   -0.005
## 80   agg1 ~~   PR5  0.013  0.002   0.002    0.005    0.005
## 103  agg3 ~~   PR3  0.011 -0.002  -0.002   -0.006   -0.006
## 162   PR1 ~~   PR2  0.009  0.002   0.002    0.005    0.005
## 143  agg7 ~~   PR5  0.008  0.001   0.001    0.005    0.005
## 86   agg2 ~~  agg8  0.005  0.001   0.001    0.004    0.004
## 148  agg8 ~~   PR3  0.005  0.001   0.001    0.004    0.004
## 114  agg4 ~~   PR3  0.004 -0.001  -0.001   -0.004   -0.004
## 69   agg1 ~~  agg4  0.003 -0.001  -0.001   -0.003   -0.003
## 171   PR4 ~~   PR5  0.003 -0.001  -0.001   -0.003   -0.003
## 77   agg1 ~~   PR2  0.002  0.001   0.001    0.002    0.002
## 78   agg1 ~~   PR3  0.002 -0.001  -0.001   -0.003   -0.003
## 59     PR =~  agg3  0.001 -0.002  -0.001   -0.001   -0.001
## 58     PR =~  agg2  0.001 -0.001  -0.001   -0.001   -0.001
## 98   agg3 ~~  agg8  0.000  0.000   0.000    0.000    0.000

Reporting SEMs

Cautions regarding the use of SEM

Path vs SEM models

SEM summary