Aja Murray; Aja.Murray@ed.ac.uk
\[Observed Score= True Score + Error\]
\[\large \alpha\]
\[ \large \omega \]
##
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
##
## cor2cov
omega_verbal<-omega(agg.items[ ,c(1:5)], nfactors=1) ##omega for the verbal aggression factor (items 1-5)
## Loading required namespace: GPArotation
## Omega_h for 1 factor is not meaningful, just omega_t
## Omega
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
## digits = digits, title = title, sl = sl, labels = labels,
## plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
## covar = covar)
## Alpha: 0.87
## G.6: 0.84
## Omega Hierarchical: 0.87
## Omega H asymptotic: 1
## Omega Total 0.87
##
## Schmid Leiman Factor loadings greater than 0.2
## g F1* h2 u2 p2
## item1 0.72 0.51 0.49 1
## item2 0.80 0.64 0.36 1
## item3 0.73 0.53 0.47 1
## item4 0.69 0.47 0.53 1
## item5 0.85 0.72 0.28 1
##
## With Sums of squares of:
## g F1*
## 2.9 0.0
##
## general/max Inf max/min = NaN
## mean percent general = 1 with sd = 0 and cv of 0
## Explained Common Variance of the general factor = 1
##
## The degrees of freedom are 5 and the fit is 0
## The number of observations was 1000 with Chi Square = 1.17 with prob < 0.95
## The root mean square of the residuals is 0
## The df corrected root mean square of the residuals is 0.01
## RMSEA index = 0 and the 10 % confidence intervals are 0 0.005
## BIC = -33.37
##
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5 and the fit is 0
## The number of observations was 1000 with Chi Square = 1.17 with prob < 0.95
## The root mean square of the residuals is 0
## The df corrected root mean square of the residuals is 0.01
##
## RMSEA index = 0 and the 10 % confidence intervals are 0 0.005
## BIC = -33.37
##
## Measures of factor score adequacy
## g F1*
## Correlation of scores with factors 0.94 0
## Multiple R square of scores with factors 0.88 0
## Minimum correlation of factor score estimates 0.76 -1
##
## Total, General and Subset omega for each subset
## g F1*
## Omega total for total scores and subscales 0.87 0.87
## Omega general for total scores and subscales 0.87 0.87
## Omega group for total scores and subscales 0.00 0.00
omega_physical<-omega(agg.items[ ,c(6:10)], nfactors=1) ## calculate alpha and omega for the physical aggression factor
## Omega_h for 1 factor is not meaningful, just omega_t
## Omega
## Call: omegah(m = m, nfactors = nfactors, fm = fm, key = key, flip = flip,
## digits = digits, title = title, sl = sl, labels = labels,
## plot = plot, n.obs = n.obs, rotate = rotate, Phi = Phi, option = option,
## covar = covar)
## Alpha: 0.89
## G.6: 0.87
## Omega Hierarchical: 0.89
## Omega H asymptotic: 1
## Omega Total 0.89
##
## Schmid Leiman Factor loadings greater than 0.2
## g F1* h2 u2 p2
## item6 0.66 0.44 0.56 1
## item7 0.90 0.81 0.19 1
## item8 0.92 0.85 0.15 1
## item9 0.70 0.49 0.51 1
## item10 0.74 0.55 0.45 1
##
## With Sums of squares of:
## g F1*
## 3.1 0.0
##
## general/max Inf max/min = NaN
## mean percent general = 1 with sd = 0 and cv of 0
## Explained Common Variance of the general factor = 1
##
## The degrees of freedom are 5 and the fit is 0.01
## The number of observations was 1000 with Chi Square = 6.81 with prob < 0.24
## The root mean square of the residuals is 0.01
## The df corrected root mean square of the residuals is 0.01
## RMSEA index = 0.019 and the 10 % confidence intervals are 0 0.051
## BIC = -27.73
##
## Compare this with the adequacy of just a general factor and no group factors
## The degrees of freedom for just the general factor are 5 and the fit is 0.01
## The number of observations was 1000 with Chi Square = 6.81 with prob < 0.24
## The root mean square of the residuals is 0.01
## The df corrected root mean square of the residuals is 0.01
##
## RMSEA index = 0.019 and the 10 % confidence intervals are 0 0.051
## BIC = -27.73
##
## Measures of factor score adequacy
## g F1*
## Correlation of scores with factors 0.96 0
## Multiple R square of scores with factors 0.93 0
## Minimum correlation of factor score estimates 0.86 -1
##
## Total, General and Subset omega for each subset
## g F1*
## Omega total for total scores and subscales 0.89 0.89
## Omega general for total scores and subscales 0.89 0.89
## Omega group for total scores and subscales 0.00 0.00
\[\frac{r_{xy}}{\sqrt{r_{xx}r_{yy}}}\]
Where: - \(r_{xy}\) is the uncorrected correlation between variables \(x\) and \(y\) - \(r_{xx}\) is an estimate of the reliability of variable \(x\) - \(r_{yy}\) is an estimate of the reliability of variable \(y\)
However, this requires multiple steps (compute reliability, correct correlations)
Further complicated when it’s a whole correlation matrix that requires correction
SEM can solve the problem in a single step
##CFA for aggression
agg.CFA<-'Vagg=~agg1+agg2+agg3+agg4+agg5
Pagg=~agg6+agg7+agg8+agg9+agg10
Vagg~~Pagg'
agg.CFA.est<-cfa(agg.CFA, data=agg.PR.data)
summary(agg.CFA.est, fit.measures=T, standardized=T)
## lavaan 0.6.15 ended normally after 30 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 21
##
## Number of observations 570
##
## Model Test User Model:
##
## Test statistic 46.611
## Degrees of freedom 34
## P-value (Chi-square) 0.073
##
## Model Test Baseline Model:
##
## Test statistic 3343.183
## Degrees of freedom 45
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.996
## Tucker-Lewis Index (TLI) 0.995
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -6599.772
## Loglikelihood unrestricted model (H1) -6576.466
##
## Akaike (AIC) 13241.543
## Bayesian (BIC) 13332.802
## Sample-size adjusted Bayesian (SABIC) 13266.136
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.026
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.042
## P-value H_0: RMSEA <= 0.050 0.994
## P-value H_0: RMSEA >= 0.080 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.021
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Vagg =~
## agg1 1.000 0.756 0.737
## agg2 1.145 0.059 19.279 0.000 0.866 0.830
## agg3 0.910 0.058 15.721 0.000 0.688 0.680
## agg4 0.913 0.058 15.620 0.000 0.691 0.676
## agg5 1.139 0.058 19.593 0.000 0.862 0.844
## Pagg =~
## agg6 1.000 0.691 0.678
## agg7 1.395 0.073 19.020 0.000 0.964 0.898
## agg8 1.331 0.070 18.995 0.000 0.919 0.897
## agg9 1.155 0.071 16.263 0.000 0.798 0.747
## agg10 1.022 0.065 15.766 0.000 0.706 0.722
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Vagg ~~
## Pagg 0.386 0.037 10.393 0.000 0.739 0.739
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .agg1 0.480 0.033 14.488 0.000 0.480 0.456
## .agg2 0.340 0.027 12.380 0.000 0.340 0.312
## .agg3 0.550 0.036 15.164 0.000 0.550 0.538
## .agg4 0.567 0.037 15.204 0.000 0.567 0.543
## .agg5 0.300 0.025 11.843 0.000 0.300 0.288
## .agg6 0.560 0.036 15.707 0.000 0.560 0.540
## .agg7 0.222 0.021 10.816 0.000 0.222 0.193
## .agg8 0.206 0.019 10.917 0.000 0.206 0.196
## .agg9 0.504 0.033 15.123 0.000 0.504 0.442
## .agg10 0.458 0.030 15.374 0.000 0.458 0.479
## Vagg 0.572 0.058 9.862 0.000 1.000 1.000
## Pagg 0.477 0.053 8.943 0.000 1.000 1.000
##CFA for aggression
PR.CFA<-'PR=~PR1+PR2+PR3+PR4+PR5'
PR.CFA.est<-cfa(PR.CFA, data=agg.PR.data)
summary(PR.CFA.est, fit.measures=T, standardized=T)
## lavaan 0.6.15 ended normally after 24 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 10
##
## Number of observations 570
##
## Model Test User Model:
##
## Test statistic 7.228
## Degrees of freedom 5
## P-value (Chi-square) 0.204
##
## Model Test Baseline Model:
##
## Test statistic 1978.376
## Degrees of freedom 10
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.999
## Tucker-Lewis Index (TLI) 0.998
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3097.913
## Loglikelihood unrestricted model (H1) -3094.298
##
## Akaike (AIC) 6215.825
## Bayesian (BIC) 6259.281
## Sample-size adjusted Bayesian (SABIC) 6227.536
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.028
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.069
## P-value H_0: RMSEA <= 0.050 0.771
## P-value H_0: RMSEA >= 0.080 0.015
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.009
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## PR =~
## PR1 1.000 0.769 0.776
## PR2 1.047 0.051 20.476 0.000 0.805 0.798
## PR3 1.211 0.050 24.145 0.000 0.931 0.914
## PR4 1.176 0.051 22.847 0.000 0.904 0.871
## PR5 1.031 0.052 19.959 0.000 0.792 0.781
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .PR1 0.391 0.026 14.868 0.000 0.391 0.398
## .PR2 0.370 0.025 14.536 0.000 0.370 0.364
## .PR3 0.171 0.017 10.020 0.000 0.171 0.165
## .PR4 0.259 0.021 12.521 0.000 0.259 0.241
## .PR5 0.401 0.027 14.790 0.000 0.401 0.390
## PR 0.591 0.055 10.783 0.000 1.000 1.000
## lavaan 0.6.15 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 33
##
## Number of observations 570
##
## Model Test User Model:
##
## Test statistic 107.429
## Degrees of freedom 87
## P-value (Chi-square) 0.068
##
## Model Test Baseline Model:
##
## Test statistic 5508.400
## Degrees of freedom 105
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.996
## Tucker-Lewis Index (TLI) 0.995
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -9631.059
## Loglikelihood unrestricted model (H1) -9577.344
##
## Akaike (AIC) 19328.118
## Bayesian (BIC) 19471.524
## Sample-size adjusted Bayesian (SABIC) 19366.763
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.020
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.032
## P-value H_0: RMSEA <= 0.050 1.000
## P-value H_0: RMSEA >= 0.080 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.023
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|)
## Vagg =~
## agg1 1.000
## agg2 1.146 0.059 19.313 0.000
## agg3 0.909 0.058 15.731 0.000
## agg4 0.914 0.058 15.659 0.000
## agg5 1.138 0.058 19.605 0.000
## Pagg =~
## agg6 1.000
## agg7 1.397 0.074 18.982 0.000
## agg8 1.332 0.070 18.948 0.000
## agg9 1.161 0.071 16.281 0.000
## agg10 1.025 0.065 15.762 0.000
## PR =~
## PR1 1.000
## PR2 1.048 0.051 20.549 0.000
## PR3 1.212 0.050 24.258 0.000
## PR4 1.172 0.051 22.823 0.000
## PR5 1.031 0.052 20.012 0.000
##
## Regressions:
## Estimate Std.Err z-value P(>|z|)
## PR ~
## Vagg 0.241 0.070 3.442 0.001
## Pagg 0.319 0.077 4.156 0.000
##
## Covariances:
## Estimate Std.Err z-value P(>|z|)
## Vagg ~~
## Pagg 0.386 0.037 10.390 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|)
## .agg1 0.480 0.033 14.509 0.000
## .agg2 0.339 0.027 12.418 0.000
## .agg3 0.551 0.036 15.183 0.000
## .agg4 0.566 0.037 15.211 0.000
## .agg5 0.301 0.025 11.929 0.000
## .agg6 0.562 0.036 15.723 0.000
## .agg7 0.223 0.020 10.898 0.000
## .agg8 0.208 0.019 11.035 0.000
## .agg9 0.500 0.033 15.115 0.000
## .agg10 0.457 0.030 15.379 0.000
## .PR1 0.391 0.026 14.913 0.000
## .PR2 0.368 0.025 14.578 0.000
## .PR3 0.169 0.017 10.115 0.000
## .PR4 0.264 0.021 12.745 0.000
## .PR5 0.400 0.027 14.835 0.000
## Vagg 0.572 0.058 9.870 0.000
## Pagg 0.476 0.053 8.927 0.000
## .PR 0.450 0.043 10.596 0.000
## lavaan 0.6.15 ended normally after 35 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 33
##
## Number of observations 570
##
## Model Test User Model:
##
## Test statistic 107.429
## Degrees of freedom 87
## P-value (Chi-square) 0.068
##
## Model Test Baseline Model:
##
## Test statistic 5508.400
## Degrees of freedom 105
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.996
## Tucker-Lewis Index (TLI) 0.995
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -9631.059
## Loglikelihood unrestricted model (H1) -9577.344
##
## Akaike (AIC) 19328.118
## Bayesian (BIC) 19471.524
## Sample-size adjusted Bayesian (SABIC) 19366.763
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.020
## 90 Percent confidence interval - lower 0.000
## 90 Percent confidence interval - upper 0.032
## P-value H_0: RMSEA <= 0.050 1.000
## P-value H_0: RMSEA >= 0.080 0.000
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.023
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Vagg =~
## agg1 1.000 0.757 0.738
## agg2 1.146 0.059 19.313 0.000 0.867 0.830
## agg3 0.909 0.058 15.731 0.000 0.688 0.680
## agg4 0.914 0.058 15.659 0.000 0.692 0.677
## agg5 1.138 0.058 19.605 0.000 0.861 0.843
## Pagg =~
## agg6 1.000 0.690 0.677
## agg7 1.397 0.074 18.982 0.000 0.963 0.898
## agg8 1.332 0.070 18.948 0.000 0.918 0.896
## agg9 1.161 0.071 16.281 0.000 0.800 0.749
## agg10 1.025 0.065 15.762 0.000 0.707 0.723
## PR =~
## PR1 1.000 0.769 0.776
## PR2 1.048 0.051 20.549 0.000 0.806 0.799
## PR3 1.212 0.050 24.258 0.000 0.932 0.915
## PR4 1.172 0.051 22.823 0.000 0.902 0.869
## PR5 1.031 0.052 20.012 0.000 0.793 0.782
##
## Regressions:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## PR ~
## Vagg 0.241 0.070 3.442 0.001 0.237 0.237
## Pagg 0.319 0.077 4.156 0.000 0.286 0.286
##
## Covariances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Vagg ~~
## Pagg 0.386 0.037 10.390 0.000 0.739 0.739
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .agg1 0.480 0.033 14.509 0.000 0.480 0.456
## .agg2 0.339 0.027 12.418 0.000 0.339 0.311
## .agg3 0.551 0.036 15.183 0.000 0.551 0.538
## .agg4 0.566 0.037 15.211 0.000 0.566 0.542
## .agg5 0.301 0.025 11.929 0.000 0.301 0.289
## .agg6 0.562 0.036 15.723 0.000 0.562 0.542
## .agg7 0.223 0.020 10.898 0.000 0.223 0.194
## .agg8 0.208 0.019 11.035 0.000 0.208 0.197
## .agg9 0.500 0.033 15.115 0.000 0.500 0.439
## .agg10 0.457 0.030 15.379 0.000 0.457 0.478
## .PR1 0.391 0.026 14.913 0.000 0.391 0.398
## .PR2 0.368 0.025 14.578 0.000 0.368 0.362
## .PR3 0.169 0.017 10.115 0.000 0.169 0.163
## .PR4 0.264 0.021 12.745 0.000 0.264 0.245
## .PR5 0.400 0.027 14.835 0.000 0.400 0.389
## Vagg 0.572 0.058 9.870 0.000 1.000 1.000
## Pagg 0.476 0.053 8.927 0.000 1.000 1.000
## .PR 0.450 0.043 10.596 0.000 0.762 0.762
## lhs op rhs mi epc sepc.lv sepc.all sepc.nox
## 68 agg1 ~~ agg3 10.595 -0.082 -0.082 -0.160 -0.160
## 95 agg3 ~~ agg5 8.947 0.069 0.069 0.170 0.170
## 137 agg7 ~~ agg9 7.264 -0.056 -0.056 -0.167 -0.167
## 45 Vagg =~ PR4 6.615 -0.102 -0.077 -0.075 -0.075
## 102 agg3 ~~ PR2 5.852 0.051 0.051 0.113 0.113
## 65 PR =~ agg9 5.242 0.112 0.086 0.081 0.081
## 131 agg6 ~~ PR1 4.855 0.047 0.047 0.101 0.101
## 123 agg5 ~~ PR2 4.643 -0.037 -0.037 -0.112 -0.112
## 119 agg5 ~~ agg8 4.337 -0.031 -0.031 -0.122 -0.122
## 169 PR3 ~~ PR4 4.283 0.038 0.038 0.180 0.180
## 106 agg4 ~~ agg5 4.227 -0.048 -0.048 -0.116 -0.116
## 167 PR2 ~~ PR4 4.102 -0.036 -0.036 -0.117 -0.117
## 104 agg3 ~~ PR4 4.019 -0.038 -0.038 -0.099 -0.099
## 51 Pagg =~ agg5 3.541 -0.142 -0.098 -0.096 -0.096
## 50 Pagg =~ agg4 3.537 0.161 0.111 0.108 0.108
## 160 agg10 ~~ PR4 3.301 0.031 0.031 0.090 0.090
## 168 PR2 ~~ PR5 3.158 0.034 0.034 0.089 0.089
## 117 agg5 ~~ agg6 3.095 -0.036 -0.036 -0.088 -0.088
## 170 PR3 ~~ PR5 3.041 -0.031 -0.031 -0.117 -0.117
## 72 agg1 ~~ agg7 2.948 -0.030 -0.030 -0.093 -0.093
## 74 agg1 ~~ agg9 2.910 0.039 0.039 0.080 0.080
## 140 agg7 ~~ PR2 2.806 0.026 0.026 0.090 0.090
## 118 agg5 ~~ agg7 2.711 0.025 0.025 0.097 0.097
## 154 agg9 ~~ PR3 2.622 0.026 0.026 0.089 0.089
## 141 agg7 ~~ PR3 2.592 -0.020 -0.020 -0.101 -0.101
## 39 Vagg =~ agg8 2.564 -0.095 -0.072 -0.070 -0.070
## 92 agg2 ~~ PR4 2.508 -0.026 -0.026 -0.085 -0.085
## 88 agg2 ~~ agg10 2.378 -0.030 -0.030 -0.077 -0.077
## 124 agg5 ~~ PR3 2.238 0.021 0.021 0.091 0.091
## 44 Vagg =~ PR3 2.209 0.053 0.040 0.040 0.040
## 47 Pagg =~ agg1 2.199 0.121 0.084 0.081 0.081
## 144 agg8 ~~ agg9 2.193 0.029 0.029 0.091 0.091
## 93 agg2 ~~ PR5 1.966 0.026 0.026 0.071 0.071
## 62 PR =~ agg6 1.832 -0.069 -0.053 -0.052 -0.052
## 146 agg8 ~~ PR1 1.649 -0.019 -0.019 -0.068 -0.068
## 40 Vagg =~ agg9 1.613 0.094 0.071 0.067 0.067
## 38 Vagg =~ agg7 1.415 0.074 0.056 0.052 0.052
## 153 agg9 ~~ PR2 1.410 -0.024 -0.024 -0.056 -0.056
## 64 PR =~ agg8 1.307 -0.043 -0.033 -0.032 -0.032
## 156 agg9 ~~ PR5 1.255 0.023 0.023 0.052 0.052
## 37 Vagg =~ agg6 1.218 -0.084 -0.064 -0.063 -0.063
## 99 agg3 ~~ agg9 1.215 -0.027 -0.027 -0.051 -0.051
## 138 agg7 ~~ agg10 1.164 0.021 0.021 0.065 0.065
## 60 PR =~ agg4 1.132 0.055 0.042 0.042 0.042
## 107 agg4 ~~ agg6 1.119 0.027 0.027 0.048 0.048
## 125 agg5 ~~ PR4 1.091 0.016 0.016 0.057 0.057
## 163 PR1 ~~ PR3 1.054 -0.018 -0.018 -0.068 -0.068
## 75 agg1 ~~ agg10 1.050 0.022 0.022 0.048 0.048
## 122 agg5 ~~ PR1 1.017 -0.018 -0.018 -0.052 -0.052
## 97 agg3 ~~ agg7 0.976 0.018 0.018 0.052 0.052
## 132 agg6 ~~ PR2 0.925 -0.020 -0.020 -0.044 -0.044
## 48 Pagg =~ agg2 0.906 -0.074 -0.051 -0.049 -0.049
## 61 PR =~ agg5 0.898 -0.042 -0.032 -0.031 -0.031
## 126 agg5 ~~ PR5 0.865 -0.017 -0.017 -0.048 -0.048
## 101 agg3 ~~ PR1 0.855 0.020 0.020 0.043 0.043
## 55 Pagg =~ PR4 0.844 -0.040 -0.027 -0.026 -0.026
## 91 agg2 ~~ PR3 0.770 0.013 0.013 0.052 0.052
## 53 Pagg =~ PR2 0.687 0.039 0.027 0.027 0.027
## 66 PR =~ agg10 0.651 0.037 0.029 0.029 0.029
## 113 agg4 ~~ PR2 0.650 0.017 0.017 0.038 0.038
## 70 agg1 ~~ agg5 0.615 0.018 0.018 0.047 0.047
## 133 agg6 ~~ PR3 0.593 -0.013 -0.013 -0.042 -0.042
## 71 agg1 ~~ agg6 0.588 0.018 0.018 0.035 0.035
## 105 agg3 ~~ PR5 0.569 -0.016 -0.016 -0.035 -0.035
## 115 agg4 ~~ PR4 0.536 -0.014 -0.014 -0.036 -0.036
## 134 agg6 ~~ PR4 0.515 -0.013 -0.013 -0.035 -0.035
## 130 agg6 ~~ agg10 0.505 -0.017 -0.017 -0.033 -0.033
## 159 agg10 ~~ PR3 0.476 -0.010 -0.010 -0.038 -0.038
## 73 agg1 ~~ agg8 0.457 0.011 0.011 0.036 0.036
## 82 agg2 ~~ agg4 0.417 0.016 0.016 0.036 0.036
## 145 agg8 ~~ agg10 0.405 -0.012 -0.012 -0.038 -0.038
## 158 agg10 ~~ PR2 0.399 -0.012 -0.012 -0.029 -0.029
## 76 agg1 ~~ PR1 0.394 0.013 0.013 0.030 0.030
## 164 PR1 ~~ PR4 0.384 0.011 0.011 0.035 0.035
## 152 agg9 ~~ PR1 0.375 -0.013 -0.013 -0.029 -0.029
## 147 agg8 ~~ PR2 0.362 0.009 0.009 0.032 0.032
## 128 agg6 ~~ agg8 0.344 0.011 0.011 0.034 0.034
## 81 agg2 ~~ agg3 0.315 -0.013 -0.013 -0.031 -0.031
## 150 agg8 ~~ PR5 0.297 -0.008 -0.008 -0.029 -0.029
## 121 agg5 ~~ agg10 0.297 0.010 0.010 0.028 0.028
## 112 agg4 ~~ PR1 0.273 0.011 0.011 0.024 0.024
## 129 agg6 ~~ agg9 0.267 0.013 0.013 0.024 0.024
## 139 agg7 ~~ PR1 0.258 0.008 0.008 0.027 0.027
## 79 agg1 ~~ PR4 0.244 -0.009 -0.009 -0.025 -0.025
## 151 agg9 ~~ agg10 0.238 -0.011 -0.011 -0.023 -0.023
## 109 agg4 ~~ agg8 0.235 0.009 0.009 0.026 0.026
## 67 agg1 ~~ agg2 0.220 0.011 0.011 0.027 0.027
## 110 agg4 ~~ agg9 0.175 0.010 0.010 0.019 0.019
## 127 agg6 ~~ agg7 0.172 0.008 0.008 0.024 0.024
## 46 Vagg =~ PR5 0.165 0.018 0.014 0.014 0.014
## 43 Vagg =~ PR2 0.156 0.017 0.013 0.013 0.013
## 49 Pagg =~ agg3 0.141 0.032 0.022 0.022 0.022
## 57 PR =~ agg1 0.126 0.017 0.013 0.013 0.013
## 116 agg4 ~~ PR5 0.118 0.008 0.008 0.016 0.016
## 165 PR1 ~~ PR5 0.117 0.007 0.007 0.017 0.017
## 56 Pagg =~ PR5 0.116 0.017 0.012 0.011 0.011
## 52 Pagg =~ PR1 0.111 0.016 0.011 0.011 0.011
## 42 Vagg =~ PR1 0.101 0.014 0.011 0.011 0.011
## 136 agg7 ~~ agg8 0.090 0.006 0.006 0.029 0.029
## 89 agg2 ~~ PR1 0.088 -0.005 -0.005 -0.015 -0.015
## 83 agg2 ~~ agg5 0.078 0.007 0.007 0.021 0.021
## 41 Vagg =~ agg10 0.063 0.018 0.013 0.014 0.014
## 157 agg10 ~~ PR1 0.056 0.005 0.005 0.011 0.011
## 54 Pagg =~ PR3 0.055 -0.009 -0.006 -0.006 -0.006
## 90 agg2 ~~ PR2 0.054 -0.004 -0.004 -0.012 -0.012
## 96 agg3 ~~ agg6 0.051 -0.006 -0.006 -0.010 -0.010
## 166 PR2 ~~ PR3 0.045 0.004 0.004 0.015 0.015
## 149 agg8 ~~ PR4 0.045 0.003 0.003 0.012 0.012
## 100 agg3 ~~ agg10 0.044 0.005 0.005 0.010 0.010
## 120 agg5 ~~ agg9 0.040 -0.004 -0.004 -0.010 -0.010
## 161 agg10 ~~ PR5 0.037 -0.004 -0.004 -0.009 -0.009
## 85 agg2 ~~ agg7 0.032 0.003 0.003 0.010 0.010
## 111 agg4 ~~ agg10 0.031 0.004 0.004 0.008 0.008
## 108 agg4 ~~ agg7 0.027 -0.003 -0.003 -0.009 -0.009
## 84 agg2 ~~ agg6 0.023 -0.003 -0.003 -0.007 -0.007
## 63 PR =~ agg7 0.018 -0.005 -0.004 -0.004 -0.004
## 94 agg3 ~~ agg4 0.016 -0.003 -0.003 -0.006 -0.006
## 142 agg7 ~~ PR4 0.015 -0.002 -0.002 -0.007 -0.007
## 155 agg9 ~~ PR4 0.015 0.002 0.002 0.006 0.006
## 87 agg2 ~~ agg9 0.014 0.002 0.002 0.006 0.006
## 135 agg6 ~~ PR5 0.014 -0.003 -0.003 -0.005 -0.005
## 80 agg1 ~~ PR5 0.013 0.002 0.002 0.005 0.005
## 103 agg3 ~~ PR3 0.011 -0.002 -0.002 -0.006 -0.006
## 162 PR1 ~~ PR2 0.009 0.002 0.002 0.005 0.005
## 143 agg7 ~~ PR5 0.008 0.001 0.001 0.005 0.005
## 86 agg2 ~~ agg8 0.005 0.001 0.001 0.004 0.004
## 148 agg8 ~~ PR3 0.005 0.001 0.001 0.004 0.004
## 114 agg4 ~~ PR3 0.004 -0.001 -0.001 -0.004 -0.004
## 69 agg1 ~~ agg4 0.003 -0.001 -0.001 -0.003 -0.003
## 171 PR4 ~~ PR5 0.003 -0.001 -0.001 -0.003 -0.003
## 77 agg1 ~~ PR2 0.002 0.001 0.001 0.002 0.002
## 78 agg1 ~~ PR3 0.002 -0.001 -0.001 -0.003 -0.003
## 59 PR =~ agg3 0.001 -0.002 -0.001 -0.001 -0.001
## 58 PR =~ agg2 0.001 -0.001 -0.001 -0.001 -0.001
## 98 agg3 ~~ agg8 0.000 0.000 0.000 0.000 0.000
Main principles: transparency and reproducibility
Method
Results