Aja Murray; Aja.Murray@ed.ac.uk
## vars n mean sd median trimmed mad min max range skew kurtosis
## item1 1 500 0.01 1.02 -0.40 -0.18 0.59 -0.83 5.32 6.15 1.75 3.30
## item2 2 500 0.05 1.31 -0.42 -0.21 0.83 -1.04 6.34 7.39 1.76 3.13
## item3 3 500 0.17 1.28 -0.24 -0.06 0.96 -0.98 5.25 6.23 1.64 2.63
## item4 4 500 0.11 1.16 -0.37 -0.12 0.64 -0.83 7.26 8.09 2.05 5.57
## se
## item1 0.05
## item2 0.06
## item3 0.06
## item4 0.05
model1<-'Agg=~item1+item2+item3+item4'
model1.est<-cfa(model1, data=Agg_data)
summary(model1.est, fit.measures=T, standardized=T)
## lavaan 0.6-11 ended normally after 31 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 8
##
## Number of observations 500
##
## Model Test User Model:
##
## Test statistic 12.998
## Degrees of freedom 2
## P-value (Chi-square) 0.002
##
## Model Test Baseline Model:
##
## Test statistic 187.030
## Degrees of freedom 6
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.939
## Tucker-Lewis Index (TLI) 0.818
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3097.350
## Loglikelihood unrestricted model (H1) -3090.851
##
## Akaike (AIC) 6210.700
## Bayesian (BIC) 6244.417
## Sample-size adjusted Bayesian (BIC) 6219.024
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.105
## 90 Percent confidence interval - lower 0.056
## 90 Percent confidence interval - upper 0.162
## P-value RMSEA <= 0.05 0.035
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.038
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Agg =~
## item1 1.000 0.583 0.570
## item2 1.179 0.183 6.439 0.000 0.688 0.524
## item3 0.942 0.160 5.907 0.000 0.550 0.429
## item4 1.080 0.167 6.481 0.000 0.630 0.541
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .item1 0.705 0.068 10.424 0.000 0.705 0.675
## .item2 1.252 0.108 11.610 0.000 1.252 0.726
## .item3 1.337 0.100 13.352 0.000 1.337 0.816
## .item4 0.957 0.086 11.182 0.000 0.957 0.707
## Agg 0.340 0.070 4.826 0.000 1.000 1.000
model1<-'Agg=~item1+item2+item3+item4'
model1.est<-cfa(model1, data=Agg_data, estimator='MLM')
summary(model1.est, fit.measures=T, standardized=T, ci=T)
## lavaan 0.6-11 ended normally after 31 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 8
##
## Number of observations 500
##
## Model Test User Model:
## Standard Robust
## Test Statistic 12.998 9.941
## Degrees of freedom 2 2
## P-value (Chi-square) 0.002 0.007
## Scaling correction factor 1.307
## Satorra-Bentler correction
##
## Model Test Baseline Model:
##
## Test statistic 187.030 114.973
## Degrees of freedom 6 6
## P-value 0.000 0.000
## Scaling correction factor 1.627
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.939 0.927
## Tucker-Lewis Index (TLI) 0.818 0.781
##
## Robust Comparative Fit Index (CFI) 0.941
## Robust Tucker-Lewis Index (TLI) 0.824
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3097.350 -3097.350
## Loglikelihood unrestricted model (H1) -3090.851 -3090.851
##
## Akaike (AIC) 6210.700 6210.700
## Bayesian (BIC) 6244.417 6244.417
## Sample-size adjusted Bayesian (BIC) 6219.024 6219.024
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.105 0.089
## 90 Percent confidence interval - lower 0.056 0.045
## 90 Percent confidence interval - upper 0.162 0.140
## P-value RMSEA <= 0.05 0.035 0.069
##
## Robust RMSEA 0.102
## 90 Percent confidence interval - lower 0.045
## 90 Percent confidence interval - upper 0.169
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.038 0.038
##
## Parameter Estimates:
##
## Standard errors Robust.sem
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## Agg =~
## item1 1.000 1.000 1.000
## item2 1.179 0.216 5.465 0.000 0.756 1.602
## item3 0.942 0.209 4.510 0.000 0.533 1.352
## item4 1.080 0.203 5.321 0.000 0.682 1.478
## Std.lv Std.all
##
## 0.583 0.570
## 0.688 0.524
## 0.550 0.429
## 0.630 0.541
##
## Variances:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .item1 0.705 0.091 7.705 0.000 0.526 0.884
## .item2 1.252 0.142 8.799 0.000 0.973 1.531
## .item3 1.337 0.138 9.690 0.000 1.066 1.607
## .item4 0.957 0.128 7.489 0.000 0.707 1.208
## Agg 0.340 0.091 3.738 0.000 0.162 0.518
## Std.lv Std.all
## 0.705 0.675
## 1.252 0.726
## 1.337 0.816
## 0.957 0.707
## 1.000 1.000
model1<-'Agg=~item1+item2+item3+item4'
model1.est<-cfa(model1, data=Agg_data, estimator='MLR')
summary(model1.est, fit.measures=T, standardized=T, ci=T)
## lavaan 0.6-11 ended normally after 31 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 8
##
## Number of observations 500
##
## Model Test User Model:
## Standard Robust
## Test Statistic 12.998 13.837
## Degrees of freedom 2 2
## P-value (Chi-square) 0.002 0.001
## Scaling correction factor 0.939
## Yuan-Bentler correction (Mplus variant)
##
## Model Test Baseline Model:
##
## Test statistic 187.030 148.841
## Degrees of freedom 6 6
## P-value 0.000 0.000
## Scaling correction factor 1.257
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.939 0.917
## Tucker-Lewis Index (TLI) 0.818 0.751
##
## Robust Comparative Fit Index (CFI) 0.938
## Robust Tucker-Lewis Index (TLI) 0.814
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3097.350 -3097.350
## Scaling correction factor 2.129
## for the MLR correction
## Loglikelihood unrestricted model (H1) -3090.851 -3090.851
## Scaling correction factor 1.891
## for the MLR correction
##
## Akaike (AIC) 6210.700 6210.700
## Bayesian (BIC) 6244.417 6244.417
## Sample-size adjusted Bayesian (BIC) 6219.024 6219.024
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.105 0.109
## 90 Percent confidence interval - lower 0.056 0.058
## 90 Percent confidence interval - upper 0.162 0.168
## P-value RMSEA <= 0.05 0.035 0.030
##
## Robust RMSEA 0.105
## 90 Percent confidence interval - lower 0.058
## 90 Percent confidence interval - upper 0.161
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.038 0.038
##
## Parameter Estimates:
##
## Standard errors Sandwich
## Information bread Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## Agg =~
## item1 1.000 1.000 1.000
## item2 1.179 0.194 6.090 0.000 0.800 1.559
## item3 0.942 0.260 3.619 0.000 0.432 1.453
## item4 1.080 0.249 4.339 0.000 0.592 1.568
## Std.lv Std.all
##
## 0.583 0.570
## 0.688 0.524
## 0.550 0.429
## 0.630 0.541
##
## Variances:
## Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
## .item1 0.705 0.098 7.201 0.000 0.513 0.897
## .item2 1.252 0.148 8.434 0.000 0.961 1.543
## .item3 1.337 0.143 9.341 0.000 1.056 1.617
## .item4 0.957 0.134 7.148 0.000 0.695 1.220
## Agg 0.340 0.099 3.433 0.001 0.146 0.534
## Std.lv Std.all
## 0.705 0.675
## 1.252 0.726
## 1.337 0.816
## 0.957 0.707
## 1.000 1.000
model1<-'Agg=~item1+item2+item3+item4'
model1.est<-cfa(model1, data=Agg_data2)
summary(model1.est, fit.measures=T, standardized=T)
## lavaan 0.6-11 ended normally after 36 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 8
##
## Number of observations 500
##
## Model Test User Model:
##
## Test statistic 12.856
## Degrees of freedom 2
## P-value (Chi-square) 0.002
##
## Model Test Baseline Model:
##
## Test statistic 64.410
## Degrees of freedom 6
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.814
## Tucker-Lewis Index (TLI) 0.442
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -768.162
## Loglikelihood unrestricted model (H1) -761.734
##
## Akaike (AIC) 1552.325
## Bayesian (BIC) 1586.042
## Sample-size adjusted Bayesian (BIC) 1560.649
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.104
## 90 Percent confidence interval - lower 0.055
## 90 Percent confidence interval - upper 0.162
## P-value RMSEA <= 0.05 0.036
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.045
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Expected
## Information saturated (h1) model Structured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Agg =~
## item1 1.000 0.128 0.375
## item2 1.413 0.440 3.214 0.001 0.180 0.458
## item3 1.504 0.457 3.287 0.001 0.192 0.387
## item4 0.527 0.184 2.868 0.004 0.067 0.267
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .item1 0.100 0.008 11.743 0.000 0.100 0.859
## .item2 0.123 0.013 9.232 0.000 0.123 0.790
## .item3 0.210 0.018 11.413 0.000 0.210 0.851
## .item4 0.059 0.004 13.973 0.000 0.059 0.929
## Agg 0.016 0.007 2.393 0.017 1.000 1.000
model1<-'Agg=~item1+item2+item3+item4'
model1.est<-cfa(model1, data=Agg_data2, ordered=c('item1','item2','item3','item4'))
summary(model1.est, fit.measures=T, standardized=T)
## lavaan 0.6-11 ended normally after 24 iterations
##
## Estimator DWLS
## Optimization method NLMINB
## Number of model parameters 8
##
## Number of observations 500
##
## Model Test User Model:
## Standard Robust
## Test Statistic 7.257 7.807
## Degrees of freedom 2 2
## P-value (Chi-square) 0.027 0.020
## Scaling correction factor 0.943
## Shift parameter 0.115
## simple second-order correction
##
## Model Test Baseline Model:
##
## Test statistic 80.264 75.274
## Degrees of freedom 6 6
## P-value 0.000 0.000
## Scaling correction factor 1.072
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.929 0.916
## Tucker-Lewis Index (TLI) 0.788 0.749
##
## Robust Comparative Fit Index (CFI) NA
## Robust Tucker-Lewis Index (TLI) NA
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.073 0.076
## 90 Percent confidence interval - lower 0.021 0.026
## 90 Percent confidence interval - upper 0.133 0.136
## P-value RMSEA <= 0.05 0.194 0.166
##
## Robust RMSEA NA
## 90 Percent confidence interval - lower NA
## 90 Percent confidence interval - upper NA
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.089 0.089
##
## Parameter Estimates:
##
## Standard errors Robust.sem
## Information Expected
## Information saturated (h1) model Unstructured
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Agg =~
## item1 1.000 0.516 0.516
## item2 1.115 0.296 3.767 0.000 0.576 0.576
## item3 1.102 0.314 3.504 0.000 0.569 0.569
## item4 1.300 0.393 3.308 0.001 0.671 0.671
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .item1 0.000 0.000 0.000
## .item2 0.000 0.000 0.000
## .item3 0.000 0.000 0.000
## .item4 0.000 0.000 0.000
## Agg 0.000 0.000 0.000
##
## Thresholds:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## item1|t1 1.108 0.071 15.690 0.000 1.108 1.108
## item2|t1 0.871 0.065 13.484 0.000 0.871 0.871
## item3|t1 -0.146 0.056 -2.590 0.010 -0.146 -0.146
## item4|t1 -1.491 0.086 -17.370 0.000 -1.491 -1.491
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .item1 0.733 0.733 0.733
## .item2 0.669 0.669 0.669
## .item3 0.676 0.676 0.676
## .item4 0.550 0.550 0.550
## Agg 0.267 0.106 2.526 0.012 1.000 1.000
##
## Scales y*:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## item1 1.000 1.000 1.000
## item2 1.000 1.000 1.000
## item3 1.000 1.000 1.000
## item4 1.000 1.000 1.000
model1<-'Agg=~item1+item2+item3+item4'
model1.est<-cfa(model1, data=Agg_data, missing='ML')
summary(model1.est, fit.measures=T, standardized=T)
## lavaan 0.6-11 ended normally after 31 iterations
##
## Estimator ML
## Optimization method NLMINB
## Number of model parameters 12
##
## Number of observations 500
## Number of missing patterns 1
##
## Model Test User Model:
##
## Test statistic 12.998
## Degrees of freedom 2
## P-value (Chi-square) 0.002
##
## Model Test Baseline Model:
##
## Test statistic 187.030
## Degrees of freedom 6
## P-value 0.000
##
## User Model versus Baseline Model:
##
## Comparative Fit Index (CFI) 0.939
## Tucker-Lewis Index (TLI) 0.818
##
## Loglikelihood and Information Criteria:
##
## Loglikelihood user model (H0) -3097.350
## Loglikelihood unrestricted model (H1) -3090.851
##
## Akaike (AIC) 6218.700
## Bayesian (BIC) 6269.275
## Sample-size adjusted Bayesian (BIC) 6231.186
##
## Root Mean Square Error of Approximation:
##
## RMSEA 0.105
## 90 Percent confidence interval - lower 0.056
## 90 Percent confidence interval - upper 0.162
## P-value RMSEA <= 0.05 0.035
##
## Standardized Root Mean Square Residual:
##
## SRMR 0.032
##
## Parameter Estimates:
##
## Standard errors Standard
## Information Observed
## Observed information based on Hessian
##
## Latent Variables:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## Agg =~
## item1 1.000 0.583 0.570
## item2 1.179 0.171 6.911 0.000 0.688 0.524
## item3 0.942 0.179 5.276 0.000 0.550 0.429
## item4 1.080 0.180 6.010 0.000 0.630 0.541
##
## Intercepts:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .item1 0.011 0.046 0.245 0.807 0.011 0.011
## .item2 0.050 0.059 0.851 0.395 0.050 0.038
## .item3 0.172 0.057 3.004 0.003 0.172 0.134
## .item4 0.105 0.052 2.024 0.043 0.105 0.091
## Agg 0.000 0.000 0.000
##
## Variances:
## Estimate Std.Err z-value P(>|z|) Std.lv Std.all
## .item1 0.705 0.070 10.127 0.000 0.705 0.675
## .item2 1.252 0.110 11.346 0.000 1.252 0.726
## .item3 1.337 0.103 13.001 0.000 1.337 0.816
## .item4 0.957 0.090 10.656 0.000 0.957 0.707
## Agg 0.340 0.072 4.699 0.000 1.000 1.000