Multivariate Statistics and Methodology using R

Path analysis

Aja Murray;

This week

Learning outcomes

What is path analysis?

Mediation

Visualising a mediation model

Mediation… not to be confused with moderation

Direct and indirect effects in mediation

Visualing direct and indirect effects in mediation

Testing mediation

Traditional methods of testing mediation

Limitations of traditional methods of testing mediation

BREAK 1

WELCOME BACK 1

Testing a path mediation model in lavaan

Example

The data

library(psych)
## 
## Attaching package: 'psych'
## The following object is masked from 'package:lavaan':
## 
##     cor2cov
describe(agg.data2)
##     vars   n  mean   sd median trimmed  mad   min  max range  skew kurtosis
## Dep    1 500 -0.02 1.06   0.01   -0.03 1.10 -3.10 3.33  6.43  0.06    -0.02
## PR     2 500 -0.04 1.01  -0.06   -0.05 1.01 -3.28 2.80  6.09  0.05     0.03
## Agg    3 500  0.00 0.99  -0.03    0.01 0.91 -3.88 2.56  6.44 -0.18     0.23
##       se
## Dep 0.05
## PR  0.05
## Agg 0.04
#PR = peer rejection, Agg= aggression, Dep= depression

Mediation example

#Create the model syntax

model1<-'Dep~PR      # Depression predicted by peer rejection
        Dep~Agg     # Depression predicted by aggression (the direct effect)
        PR~Agg      # Peer rejection predicted by aggression'     


#estimate the model 

model1.est<-sem(model1, data=agg.data2)

The model output

summary(model1.est, fit.measures=T)
## lavaan 0.6-5 ended normally after 12 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          5
##                                                       
##   Number of observations                           500
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Model Test Baseline Model:
## 
##   Test statistic                               221.854
##   Degrees of freedom                                 3
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    1.000
##   Tucker-Lewis Index (TLI)                       1.000
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)              -1343.461
##   Loglikelihood unrestricted model (H1)      -1343.461
##                                                       
##   Akaike (AIC)                                2696.923
##   Bayesian (BIC)                              2717.996
##   Sample-size adjusted Bayesian (BIC)         2702.125
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.000
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.000
##   P-value RMSEA <= 0.05                             NA
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.000
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Dep ~                                               
##     PR                0.319    0.046    6.925    0.000
##     Agg               0.250    0.047    5.294    0.000
##   PR ~                                                
##     Agg               0.444    0.041   10.760    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Dep               0.887    0.056   15.811    0.000
##    .PR                0.834    0.053   15.811    0.000

Things to note from the model output

Visualising the model using semPaths()

library(semPlot)
## Registered S3 methods overwritten by 'huge':
##   method    from   
##   plot.sim  BDgraph
##   print.sim BDgraph
semPaths(model1.est, what='est')

Calculating the indirect effects

Calculating indirect effects in lavaan

  model1<-'Dep~b*PR     # Add b label here     
           Dep~Agg     
           PR~a*Agg     # Add a label here    
           
ind:=a*b                # create a new parameter ind which is the product of a and b'    

Indirect effects in the output

model1.est<-sem(model1, data=agg.data2)
summary(model1.est)
## lavaan 0.6-5 ended normally after 12 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          5
##                                                       
##   Number of observations                           500
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Dep ~                                               
##     PR         (b)    0.319    0.046    6.925    0.000
##     Agg               0.250    0.047    5.294    0.000
##   PR ~                                                
##     Agg        (a)    0.444    0.041   10.760    0.000
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .Dep               0.887    0.056   15.811    0.000
##    .PR                0.834    0.053   15.811    0.000
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|)
##     ind               0.142    0.024    5.823    0.000

Statistical significance of the indirect effects

Bootstapped CIs for indirect effect in lavaan

  model1<-'Dep~b*PR          
           Dep~Agg     
           PR~a*Agg      
ind:=a*b'    

model1.est<-sem(model1, data=agg.data2, se='bootstrap') #we add the argument se='bootstrap'

Output for bootstrapped CIs for an indirect effect in lavaan

summary(model1.est, ci=T) # we add the argument ci=T to see the confidence intervals in the output
## lavaan 0.6-5 ended normally after 12 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          5
##                                                       
##   Number of observations                           500
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   Dep ~                                                                 
##     PR         (b)    0.319    0.044    7.212    0.000    0.235    0.406
##     Agg               0.250    0.045    5.570    0.000    0.159    0.338
##   PR ~                                                                  
##     Agg        (a)    0.444    0.045    9.821    0.000    0.352    0.533
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .Dep               0.887    0.058   15.379    0.000    0.772    0.999
##    .PR                0.834    0.051   16.312    0.000    0.733    0.933
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind               0.142    0.024    5.922    0.000    0.097    0.193

Total effects in path mediation

Total effects in path mediation

\[Total = a*b + c\]

Total effect in lavaan

  model1<-'Dep~b*PR          
           Dep~c*Agg         # we add the label c for our direct effect    
           PR~a*Agg      
ind:=a*b
total:=a*b+c                 # we add a new parameter for the total effect'    

model1.est<-sem(model1, data=agg.data2, se='bootstrap') #we add the argument se='bootstrap'

Total effect in lavaan output

summary(model1.est, ci=T)
## lavaan 0.6-5 ended normally after 12 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          5
##                                                       
##   Number of observations                           500
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   Dep ~                                                                 
##     PR         (b)    0.319    0.045    7.118    0.000    0.228    0.403
##     Agg        (c)    0.250    0.045    5.505    0.000    0.161    0.340
##   PR ~                                                                  
##     Agg        (a)    0.444    0.044   10.012    0.000    0.359    0.529
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .Dep               0.887    0.060   14.704    0.000    0.771    1.008
##    .PR                0.834    0.052   15.987    0.000    0.735    0.938
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind               0.142    0.024    5.827    0.000    0.095    0.193
##     total             0.392    0.043    9.204    0.000    0.309    0.475

Why code the total effect in lavaan?

Interpreting the total, direct, and indirect effect coefficients

Standardised parameters

summary(model1.est, ci=T, standardized=T)
## lavaan 0.6-5 ended normally after 12 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                          5
##                                                       
##   Number of observations                           500
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                 0.000
##   Degrees of freedom                                 0
## 
## Parameter Estimates:
## 
##   Standard errors                            Bootstrap
##   Number of requested bootstrap draws             1000
##   Number of successful bootstrap draws            1000
## 
## Regressions:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##   Dep ~                                                                 
##     PR         (b)    0.319    0.045    7.118    0.000    0.228    0.403
##     Agg        (c)    0.250    0.045    5.505    0.000    0.161    0.340
##   PR ~                                                                  
##     Agg        (a)    0.444    0.044   10.012    0.000    0.359    0.529
##    Std.lv  Std.all
##                   
##     0.319    0.306
##     0.250    0.234
##                   
##     0.444    0.434
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##    .Dep               0.887    0.060   14.704    0.000    0.771    1.008
##    .PR                0.834    0.052   15.987    0.000    0.735    0.938
##    Std.lv  Std.all
##     0.887    0.790
##     0.834    0.812
## 
## Defined Parameters:
##                    Estimate  Std.Err  z-value  P(>|z|) ci.lower ci.upper
##     ind               0.142    0.024    5.827    0.000    0.095    0.193
##     total             0.392    0.043    9.204    0.000    0.309    0.475
##    Std.lv  Std.all
##     0.142    0.132
##     0.392    0.366

BREAK 2

Welcome back 2

Reporting path mediation models

Reporting path mediation models - example of SEM diagram with results

Note. *=significant at p<.05

Reporting path mediation models - the indirect effects

Extensions of path mediation models

Example: multiple mediation model

model2<-'Dep~b2*Aca  
         Aca~a2*Agg
         
         Dep~b1*PR
         PR~a1*Agg
         
         Dep~c*Agg  # direct effect

ind1:=a1*b1
ind2:=a2*b2
total=a1*b1+a2*b2+c'

Other path analysis models

Other path analysis models - AR

##creating a lavaan syntax object for an autoregressive model

Autoregressive<-'AggT3~AggT2
                 AggT2~AggT1'

Other path analysis models - CLPM

# creating a lavaan syntax object for a CLPM
CLPM<-'AggT3~AggT2+DepT2
       AggT2~AggT1+DepT1
       DepT3~DepT2+AggT2
       DepT2~DepT1+AggT1'

Other path analysis models - CLPM with mediation

#creating a lavaan syntax object for a longitudinal mediation model

CLPM.med<-'AggT3~AggT2+DepT2+PRT2  
           AggT2~AggT1+DepT1+PRT1
           DepT3~DepT2+AggT2+b*PRT2   # label the effect of M on Y as b
           DepT2~DepT1+AggT1+PRT1     
           PRT3~PRT2+AggT2+DepT2
           PRT2~PRT1+a*AggT1+DepT1    # label the effect of X on M as a

ind:=a*b'

Making model modifications

Cautions regarding path analysis models

Cautions regarding path analysis models - indistinguishable models

Measurement error in path analysis

Path analysis summary