Multivariate Statistics and Methodology using R

Confirmatory Factor Analysis

Aja Murray

This Week

Learning Outcomes

Overview of this lecture

Introduction to CFA

The variance-covariance matrix

round(cov(agg.items),2)
##        item1 item2 item3 item4 item5 item6 item7 item8 item9 item10
## item1   0.98  0.56  0.47  0.44  0.59 -0.01  0.09  0.06  0.10   0.05
## item2   0.56  1.00  0.53  0.52  0.67  0.01  0.10  0.06  0.11   0.06
## item3   0.47  0.53  0.98  0.46  0.58  0.04  0.09  0.04  0.10   0.02
## item4   0.44  0.52  0.46  1.00  0.56  0.04  0.10  0.04  0.11   0.06
## item5   0.59  0.67  0.58  0.56  1.01  0.01  0.08  0.04  0.08   0.04
## item6  -0.01  0.01  0.04  0.04  0.01  1.03  0.58  0.60  0.43   0.45
## item7   0.09  0.10  0.09  0.10  0.08  0.58  0.98  0.81  0.58   0.60
## item8   0.06  0.06  0.04  0.04  0.04  0.60  0.81  1.02  0.61   0.64
## item9   0.10  0.11  0.10  0.11  0.08  0.43  0.58  0.61  0.98   0.45
## item10  0.05  0.06  0.02  0.06  0.04  0.45  0.60  0.64  0.45   1.01

SEM Diagrams

Exogenous versus endogeneous variables

SEM diagram for a simple regression model

SEM diagram for a covariance

SEM diagram for a path analysis model

SEM diagram for another path analysis model

SEM diagram for a more complex model

BREAK 1

Welcome back 1

The CFA model

The parameters of a CFA

Model specification

Latent variable scaling

Scaling the latent variables by fixing factor variances

Scaling the latent variables by fixing factor loadings

Model identification

Levels of identification

Model identification illustration

The number of knowns

The number of knowns

round(cov(Three.variables),2)
##      V1   V2   V3
## V1 1.05 0.33 0.42
## V2 0.33 1.03 0.65
## V3 0.42 0.65 1.01

Implications for CFA

BREAK 2

Welcome back 2

Model estimation

Specifying which parameters to estimate…

Finding the parameter values

Maximum likelihood estimation

No convergence?

Maximum likelihood estimation assumptions

Alternative estimators

BREAK 3

Welcome back 3

Model evaluation

Global fit

Alternatives to \(\chi^2\)

Incremental fit indices

Local fit

Making model modifications

Other considerations in model evaluation

BREAK 4

Welcome back 4

Interpreting a CFA

Conducting a CFA model using lavaan

#step 1: specify the model
 
model<-'LV=~V1+V2+V3+V4'
  # we write the model using lavaan syntax enclosed in single quote marks

#step2: estimate the model

model.est<-cfa(model=model, data=df)  
   # 'model= ' refers to a lavaan syntax object with the model specification
   # 'data= ' gives name of the dataframe in which to find the variables
#step3: inspect the results

summary(model.est)
    # the summary function shows us output from a fitted model

Model specification

# simple regression model 

Regression<-'DV~IV'

# multiple regression model

Multiple.regression<-'DV~IV1+IV2+IV3'

#covariance between two variables

Covariance<-'V1~~V2'

#latent factor specification

CFA<-'LV=~V1+V2+V3+V4'

Model specification for our aggression example

  1. I hit someone
  2. I kicked someone
  3. I shoved someone
  4. I battered someone
  5. I physically hurt someone on purpose
  6. I deliberately insulted someone
  7. I swore at someone
  8. I threatened to hurt someone
  9. I called someone a nasty name to their face
  10. I shouted mean things at someone
agg_m<-
  'Pagg=~item1+item2+item3+item4+item5
  
   Vagg=~item6+item7+item8+item9+item10
   
   Pagg~~Vagg'

Model estimation in lavaan

agg_m.est<-cfa(agg_m, data=agg.items)

Scaling constraints

agg_m.est<-cfa(agg_m, data=agg.items, std.lv=T)

Model evaluation

summary(agg_m.est, fit.measures=T)
## lavaan 0.6-5 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                41.739
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.170
## 
## Model Test Baseline Model:
## 
##   Test statistic                              4711.354
##   Degrees of freedom                                45
##   P-value                                        0.000
## 
## User Model versus Baseline Model:
## 
##   Comparative Fit Index (CFI)                    0.998
##   Tucker-Lewis Index (TLI)                       0.998
## 
## Loglikelihood and Information Criteria:
## 
##   Loglikelihood user model (H0)             -11838.328
##   Loglikelihood unrestricted model (H1)     -11817.459
##                                                       
##   Akaike (AIC)                               23718.657
##   Bayesian (BIC)                             23821.720
##   Sample-size adjusted Bayesian (BIC)        23755.023
## 
## Root Mean Square Error of Approximation:
## 
##   RMSEA                                          0.015
##   90 Percent confidence interval - lower         0.000
##   90 Percent confidence interval - upper         0.029
##   P-value RMSEA <= 0.05                          1.000
## 
## Standardized Root Mean Square Residual:
## 
##   SRMR                                           0.024
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Pagg =~                                             
##     item1             0.695    0.029   24.157    0.000
##     item2             0.792    0.028   28.463    0.000
##     item3             0.678    0.029   23.387    0.000
##     item4             0.656    0.030   22.003    0.000
##     item5             0.850    0.027   31.231    0.000
##   Vagg =~                                             
##     item6             0.652    0.030   21.967    0.000
##     item7             0.873    0.025   34.276    0.000
##     item8             0.922    0.025   36.289    0.000
##     item9             0.662    0.029   23.157    0.000
##     item10            0.691    0.029   24.006    0.000
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##   Pagg ~~                                             
##     Vagg              0.098    0.035    2.792    0.005
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)
##    .item1             0.491    0.026   19.051    0.000
##    .item2             0.369    0.022   16.488    0.000
##    .item3             0.515    0.027   19.360    0.000
##    .item4             0.572    0.029   19.844    0.000
##    .item5             0.286    0.021   13.748    0.000
##    .item6             0.605    0.029   20.891    0.000
##    .item7             0.219    0.016   13.978    0.000
##    .item8             0.168    0.015   10.988    0.000
##    .item9             0.541    0.026   20.657    0.000
##    .item10            0.532    0.026   20.469    0.000
##     Pagg              1.000                           
##     Vagg              1.000

Model evaluation

modindices(agg_m.est, sort=T)
##      lhs op    rhs    mi    epc sepc.lv sepc.all sepc.nox
## 26  Pagg =~  item8 7.281 -0.051  -0.051   -0.051   -0.051
## 27  Pagg =~  item9 7.099  0.069   0.069    0.070    0.070
## 25  Pagg =~  item7 6.654  0.050   0.050    0.050    0.050
## 38 item1 ~~  item6 5.283 -0.044  -0.044   -0.080   -0.080
## 61 item4 ~~  item8 4.760 -0.030  -0.030   -0.096   -0.096
## 24  Pagg =~  item6 3.288 -0.050  -0.050   -0.049   -0.049
## 57 item3 ~~ item10 2.572 -0.029  -0.029   -0.056   -0.056
## 60 item4 ~~  item7 2.231  0.021   0.021    0.059    0.059
## 33  Vagg =~  item5 2.018 -0.032  -0.032   -0.032   -0.032
## 36 item1 ~~  item4 1.997 -0.028  -0.028   -0.054   -0.054
## 53 item3 ~~  item6 1.701  0.025   0.025    0.045    0.045
## 40 item1 ~~  item8 1.513  0.016   0.016    0.055    0.055
## 62 item4 ~~  item9 1.427  0.023   0.023    0.041    0.041
## 46 item2 ~~  item6 1.333 -0.020  -0.020   -0.043   -0.043
## 56 item3 ~~  item9 1.290  0.021   0.021    0.040    0.040
## 69 item6 ~~  item7 1.050  0.017   0.017    0.046    0.046
## 59 item4 ~~  item6 0.929  0.019   0.019    0.033    0.033
## 49 item2 ~~  item9 0.816  0.015   0.015    0.033    0.033
## 47 item2 ~~  item7 0.815  0.011   0.011    0.038    0.038
## 70 item6 ~~  item8 0.760 -0.015  -0.015   -0.046   -0.046
## 55 item3 ~~  item8 0.730 -0.011  -0.011   -0.038   -0.038
## 34 item1 ~~  item2 0.698  0.016   0.016    0.038    0.038
## 77 item8 ~~ item10 0.678  0.014   0.014    0.046    0.046
## 32  Vagg =~  item4 0.642  0.021   0.021    0.021    0.021
## 51 item3 ~~  item4 0.615  0.016   0.016    0.029    0.029
## 67 item5 ~~  item9 0.611 -0.012  -0.012   -0.031   -0.031
## 75 item7 ~~ item10 0.538 -0.012  -0.012   -0.035   -0.035
## 48 item2 ~~  item8 0.524 -0.008  -0.008   -0.034   -0.034
## 54 item3 ~~  item7 0.503  0.009   0.009    0.028    0.028
## 45 item2 ~~  item5 0.294 -0.012  -0.012   -0.036   -0.036
## 76 item8 ~~  item9 0.275  0.009   0.009    0.028    0.028
## 41 item1 ~~  item9 0.262  0.009   0.009    0.018    0.018
## 43 item2 ~~  item3 0.246 -0.010  -0.010   -0.022   -0.022
## 30  Vagg =~  item2 0.229  0.011   0.011    0.011    0.011
## 50 item2 ~~ item10 0.214  0.008   0.008    0.017    0.017
## 37 item1 ~~  item5 0.182  0.008   0.008    0.023    0.023
## 29  Vagg =~  item1 0.164  0.010   0.010    0.010    0.010
## 28  Pagg =~ item10 0.161 -0.010  -0.010   -0.010   -0.010
## 74 item7 ~~  item9 0.133 -0.006  -0.006   -0.017   -0.017
## 63 item4 ~~ item10 0.123  0.007   0.007    0.012    0.012
## 78 item9 ~~ item10 0.107 -0.006  -0.006   -0.011   -0.011
## 65 item5 ~~  item7 0.094 -0.004  -0.004   -0.014   -0.014
## 58 item4 ~~  item5 0.076  0.005   0.005    0.013    0.013
## 31  Vagg =~  item3 0.065  0.007   0.007    0.007    0.007
## 35 item1 ~~  item3 0.055 -0.005  -0.005   -0.009   -0.009
## 71 item6 ~~  item9 0.053 -0.005  -0.005   -0.008   -0.008
## 68 item5 ~~ item10 0.051  0.004   0.004    0.009    0.009
## 72 item6 ~~ item10 0.048  0.004   0.004    0.008    0.008
## 44 item2 ~~  item4 0.038  0.004   0.004    0.008    0.008
## 73 item7 ~~  item8 0.034 -0.004  -0.004   -0.022   -0.022
## 64 item5 ~~  item6 0.021 -0.002  -0.002   -0.006   -0.006
## 66 item5 ~~  item8 0.020 -0.002  -0.002   -0.007   -0.007
## 39 item1 ~~  item7 0.020 -0.002  -0.002   -0.006   -0.006
## 42 item1 ~~ item10 0.005 -0.001  -0.001   -0.003   -0.003
## 52 item3 ~~  item5 0.003  0.001   0.001    0.003    0.003

Standardised parameter estimates

summary(agg_m.est, standardized=T)
## lavaan 0.6-5 ended normally after 23 iterations
## 
##   Estimator                                         ML
##   Optimization method                           NLMINB
##   Number of free parameters                         21
##                                                       
##   Number of observations                          1000
##                                                       
## Model Test User Model:
##                                                       
##   Test statistic                                41.739
##   Degrees of freedom                                34
##   P-value (Chi-square)                           0.170
## 
## Parameter Estimates:
## 
##   Information                                 Expected
##   Information saturated (h1) model          Structured
##   Standard errors                             Standard
## 
## Latent Variables:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Pagg =~                                                               
##     item1             0.695    0.029   24.157    0.000    0.695    0.704
##     item2             0.792    0.028   28.463    0.000    0.792    0.793
##     item3             0.678    0.029   23.387    0.000    0.678    0.687
##     item4             0.656    0.030   22.003    0.000    0.656    0.655
##     item5             0.850    0.027   31.231    0.000    0.850    0.846
##   Vagg =~                                                               
##     item6             0.652    0.030   21.967    0.000    0.652    0.642
##     item7             0.873    0.025   34.276    0.000    0.873    0.881
##     item8             0.922    0.025   36.289    0.000    0.922    0.914
##     item9             0.662    0.029   23.157    0.000    0.662    0.669
##     item10            0.691    0.029   24.006    0.000    0.691    0.688
## 
## Covariances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##   Pagg ~~                                                               
##     Vagg              0.098    0.035    2.792    0.005    0.098    0.098
## 
## Variances:
##                    Estimate  Std.Err  z-value  P(>|z|)   Std.lv  Std.all
##    .item1             0.491    0.026   19.051    0.000    0.491    0.504
##    .item2             0.369    0.022   16.488    0.000    0.369    0.371
##    .item3             0.515    0.027   19.360    0.000    0.515    0.528
##    .item4             0.572    0.029   19.844    0.000    0.572    0.570
##    .item5             0.286    0.021   13.748    0.000    0.286    0.284
##    .item6             0.605    0.029   20.891    0.000    0.605    0.588
##    .item7             0.219    0.016   13.978    0.000    0.219    0.223
##    .item8             0.168    0.015   10.988    0.000    0.168    0.165
##    .item9             0.541    0.026   20.657    0.000    0.541    0.552
##    .item10            0.532    0.026   20.469    0.000    0.532    0.527
##     Pagg              1.000                               1.000    1.000
##     Vagg              1.000                               1.000    1.000

Visualising the model

semPaths(agg_m.est, what='stand')

Writing up a CFA model

Cautions regarding CFA

Summary

CFA involves testing a hypothesised factor structure