Multivariate Statistics and Methodology with R

Path analysis

Aja Murray; Aja.Murray@ed.ac.uk

This week

- Techniques
 - Path analysis (esp. path mediation models)
- Functions
 - sem() from lavaan
- Reading
 - *lavaan tutorial: http://lavaan.ugent.be/tutorial/tutorial.pdf* (section 13)

Learning outcomes

- Know how to specify, estimate, and interpret path analysis models in R
- Have a sense of the range of different models that can be fit using path analysis
- Know how to test, interpret and report path mediation models in particular

What is path analysis?

- Links several regression models together
- Tests the set of regression models as a whole
- Useful for situations where there are multiple outcome variables in sequence or parallel
- Models the relations between observed variables (i.e., does not involve latent variables)
- Common example: path mediation model

Mediation

- Is when a predictor X, has an effect on an outcome Y, via a mediating variable M
- The mediator transmits the effect of X to Y
- Examples of mediation hypotheses:
 - Conscientiousness (X) affects health (Y) via health behaviours (M)
 - Conduct problems (X) increase the risk of depression (Y) via peer problems (M)
 - Attitudes to smoking (X) predict intentions to smoke (M) which in turn predicts smoking behaviour (Y)
 - An intervention (X) to reduce youth crime (Y) works by increasing youth self-contol (M)

Visualising a mediation model

• In a SEM diagram we can represent mediation as:

Mediation... not to be confused with moderation

- Mediation is commonly confused with moderation
- Moderation is when a moderator z modifies the effect of X on Y
 - e.g., the effect of X on Y is stronger at higher levels of Z
- Also known as an interaction between X and Z
- Examples of moderation could be:
 - An intervention (X) works better to reduce bullying (Y) at older ages (Z) of school pupil
 - The relation between stress (X) and depression (Y) is lower for those scoring higher on spirituality (Z)

Direct and indirect effects in mediation

- We seldom hypothesise that a mediator completely explains the relation between X and Y
- More commonly, we expect both indirect effects and direct effects of X on Y
 - The indirect effects of X on Y are those transmitted via the mediator
 - The direct effect of X on Y is the remaining effect of X on Y

Visualing direct and indirect effects in mediation

Testing mediation

- Traditionally, mediation was tested using a series of separate regression models:
 - 1. Y~X
 - 2. Y~X+M
 - 3. M~X

Traditional methods of testing mediation

- The three regression models:
 - 1. Y~X
 - 2. Y~X+M
 - 3. M~X
- Model 1 estimates the overall effect of X on Y
- Model 2 estimates the partial effects of X and M on Y
- Model 3 estimates the effect of X on M
- If the following conditions were met, mediation was assumed to hold:
 - The effect of X on Y (eq.1) is significant
 - The effect of M on x (eq.3) is significant
 - The effect of X on Y becomes reduced when M is added into the model (eq.2)

Limitations of traditional methods of testing mediation

- Low power
- Very cumbersome for multiple mediators, predictors, or outcomes
- You don't get an estimate of the magnitude of the indirect effect
- Much better way: path mediation model

Testing a path mediation model in lavaan

- Specification
 - Create a lavaan syntax object
- Estimation
 - Estimate the model using e.g., maximum likelihood estimation
- Evaluation/interpretation
 - Inspect the model to judge how good it is
 - Interpret the parameter estimates

Example

 Does peer rejection mediate the association between aggression and depression?

The data

library(psych)

```
##
## Attaching package: 'psych'
```

The following object is masked from 'package:lavaan':
##
cor2cov

describe(agg.data2)

##		vars	n	mean	sd	median	trimmed	mad	min	max	range	skew	kurtosis	se
##	Dep	1	500	-0.07	1.08	-0.09	-0.08	1.15	-2.94	2.67	5.61	0.08	-0.33	0.05
##	PR	2	500	0.02	1.04	0.05	0.01	1.01	-2.69	3.12	5.81	0.07	-0.08	0.05
##	Agg	3	500	-0.02	0.98	0.01	-0.03	0.98	-3.16	2.70	5.86	0.02	-0.07	0.04

#PR = peer rejection, Agg= aggression, Dep= depression

Mediation example

 Does peer rejection mediate the association between aggression and depression?

#Create the mode	l syntax
model1<-'Dep~PR Dep~Agg PR~Agg	<pre># Depression predicted by peer rejection # Depression predicted by aggression (the direct effect) # Peer rejection predicted by aggression'</pre>
#estimate the mo	del
<pre>model1.est<-sem(</pre>	model1, data=agg.data2)

The model output

summary(model1.est, fit.measures=T)

```
## lavaan 0.6-5 ended normally after 13 iterations
##
##
    Estimator
                                                     ML
##
    Optimization method
                                                 NLMINB
##
    Number of free parameters
                                                     5
##
##
    Number of observations
                                                    500
##
## Model Test User Model:
##
##
    Test statistic
                                                  0.000
##
   Degrees of freedom
                                                      0
##
## Model Test Baseline Model:
##
##
   Test statistic
                                                253.745
    Degrees of freedom
##
                                                      3
##
   P-value
                                                  0.000
##
## User Model versus Baseline Model:
##
##
    Comparative Fit Index (CFI)
                                                  1.000
##
   Tucker-Lewis Index (TLI)
                                                  1.000
##
## Loglikelihood and Information Criteria:
##
                                              -1347.036
##
    Loglikelihood user model (H0)
##
    Loglikelihood unrestricted model (H1)
                                             -1347.036
##
##
   Akaike (AIC)
                                               2704.073
##
    Bayesian (BIC)
                                               2725.146
##
    Sample-size adjusted Bayesian (BIC)
                                               2709.276
##
## Root Mean Square Error of Approximation:
##
##
    RMSFA
                                                  0.000
##
   90 Percent confidence interval - lower
                                                  0.000
##
    90 Percent confidence interval - upper
                                                  0.000
##
    P-value RMSEA <= 0.05
                                                     NA
##
## Standardized Root Mean Square Residual:
##
##
    SRMR
                                                  0.000
##
## Parameter Estimates:
##
##
   Information
                                              Expected
   Information saturated (h1) model
##
                                          Structured
##
                                               Standard
   Standard errors
##
## Regressions:
                    Estimate Std.Err z-value P(>|z|)
##
##
    Dep ~
                        0.289 0.048 6.009
##
     PR
                                                  0.000
                       0.256 0.051 5.033 0.000
##
      Agg
##
   PR ~
                      0.530 0.041 12.932 0.000
##
      Agg
##
## Variances:
##
                     Estimate Std.Err z-value P(>|z|)
```

##	.Dep	0.932	0.059	15.811	0.000
##	.PR	0.805	0.051	15.811	0.000

Things to note from the model output

- All three regressions paths are statistically significant
- The model is just-identified
 - The degrees of freedom are equal to 0
 - The model fit cannot be tested
 - The model fit statistics (TLI, CFI, RMSEA, SRMR) all suggest perfect fit but this is meaningless

Visualising the model

- We can use semPaths() from the semPlot package to help us visualise the model
 - Shows the parameter estimates within an SEM diagram

```
library(semPlot)
## Registered S3 methods overwritten by 'huge':
## method from
## plot.sim BDgraph
## print.sim BDgraph
semPaths(model1.est, what='est')
```


Calculating the indirect effects

- To calculate the indirect effect of X on Y in path mediation, we need to create some new parameters
- The indirect effect of X on Y via M is:
 - *a* * *b*
 - *a* = the regression coefficient for M~X
 - *b* = the regression coefficient for Y~M

Calculating indirect effects in lavaan

- To calculate the indirect effect of X on Y in lavaan wD:
 - Use parameter labels 'a' and 'b' to label the relevant paths
 - $\circ~$ a is for the effect of X on M
 - $\circ~$ b is for the effect of M on Y
 - Use the ':=' operator to create a new parameter 'ind'
 - 'ind' represents our indirec effect

<pre>model1<-'Dep~b*PR</pre>	# Add b label here
Dep~Agg	
PR~a*Agg	# Add a label here
ind:=a*b	# create a new parameter ind which is the product of a and b'

Indirect effects in the output

model1.est<-sem(model1, data=agg.data2)
summary(model1.est)</pre>

##	lavaan 0	.6-5 ended	normally	after 13	iteration	IS	
##	Estima	tor				ML	
##	Optimi	zation meth	nod			NLMINB	
##	Number	of free pa	arameters			5	
##						_	
##	Number	of observa	ations			500	
##							
##	Model Te	st User Moo	del:				
##							
##	Test s	tatistic				0.000	
##	Degree	s of freedo	om			0	
##							
##	Paramete	r Estimates	5:				
##	_						
##	Inform	ation				Expected	
##	Inform	ation satu	rated (h1)	model	St	ructured	
##	Standa	rd errors				Standard	
##	D						
##	Regressi	ons:	Fatimata	Ctd Fam			
##	Don		Estimate	Sta.Err	z-vaiue	P(>[Z])	
##	Dep ~	(h)	0 200	0 049	6 000	0 000	
##	PK	(0)	0.209	0.040	5.009 5.022	0.000	
##	DP at		0.250	0.051	5.055	0.000	
##	Δσσ	(a)	0 530	0 041	12 932	a aaa	
##	~55	(4)	0.550	0.041	12.002	0.000	
##	Variance	s:					
##			Estimate	Std.Err	z-value	P(> z)	
##	.Dep		0.932	0.059	15.811	0.000	
##	.PR		0.805	0.051	15.811	0.000	
##							
##	Defined	Parameters	:				
##			Estimate	Std.Err	z-value	P(> z)	
##	ind		0.153	0.028	5.449	0.000	

Statistical significance of the indirect effects

- Default method of assessing the statistical significance of indirect effects assume normal sampling distribution
- May not hold for indirect effects which are the product of regression coefficients
- Instead we can use bootstrapping
 - Provides an estimate of the sampling variance of a coefficient based on the actual data
 - as opposed to a theoretical sampling distribution
 - Resamples with replacement repeatedly from the observed data
 - Calculates the sampling variance based on variation of the coefficient across resamples
 - Number of resamples usually between 1000 and 10000
 - Allows 95% confidence intervals (CIs) to be computed
 - If 95% CI includes 0, the indirect effect is not significant at alpha=.05

Bootstapped CIs for indirect effect in lavaan

model1<- 'Dep~b*PR
 Dep~Agg
 PR~a*Agg
ind:=a*b'</pre>

model1.est<-sem(model1, data=agg.data2, se='bootstrap') #we add the argument se='bootstrap'</pre>

Output for bootstrapped CIs for an indirect effect in lavaan

summary(model1.est, ci=T) # we add the argument ci=T to see the confidence intervals in the output

##	lavaan 0.6-5	ended	normally	after 13	iteration	S			
##									
##	Estimator					ML			
##	Optimizati	on metl	hod			NLMINB			
##	Number of	free pa	arameters			5			
##									
##	Number of	observa	ations			500			
##									
##	Model Test U	lser Mo	del:						
##									
##	Test stati	stic				0.000			
##	Degrees of	+reed	om			0			
##									
##	Parameter Es	timate	S:						
##	Chandand a								
##	Standard e	rrors	tod bootst	non dhouc	В	00tstrap			
##	Number of	reques	teu Dootst	rap uraws		1000			
##	Number or	succes	STUI DOOLS	trap uraw	15	1000			
## ##	Regressions								
##	Kegi e3310113.		Estimate	Std Err	z-value	P(z)	ci lower	ci unner	
##	Den ~		ESCINACE	Dearen	2 Value	1(2141)	CI.IONCI	crupper	
##	PR	(b)	0.289	0,050	5,791	0.000	0,192	0.390	
##	Δσσ	(0)	0.255	0.050	5,149	0.000	0.153	0.347	
##	PR ~		01250	0.000	51215	0.000	0.1255	01517	
##	Agg	(a)	0.530	0.039	13,422	0.000	0,449	0.607	
##	-80	()							
##	Variances:								
##			Estimate	Std.Err	z-value	P(> z)	<pre>ci.lower</pre>	<pre>ci.upper</pre>	
##	.Dep		0.932	0.055	17.020	0.000	0.821	1.042	
##	.PR		0.805	0.053	15.193	0.000	0.705	0.908	
##									
##	Defined Para	meters	:						
##			Estimate	Std.Err	z-value	P(> z)	<pre>ci.lower</pre>	<pre>ci.upper</pre>	
##	ind		0.153	0.028	5.423	0.000	0.101	0.212	

Total effects in path mediation

 As well as the direct and indirect effect, it is often of interest to know the **total** effect of X on Y

Total = Indirect + Direct

Total effects in path mediation

Total = a * b + c

Total effect in lavaan

model1<-'Dep~b*PR
 Dep~c*Agg # we add the label c for our direct effect
 PR~a*Agg
ind:=a*b
total:=a*b+c # we add a new parameter for the total effect'
model1.est<-sem(model1, data=agg.data2, se='bootstrap') #we add the argument se='bootstrap'</pre>

Total effect in lavaan output

summary(model1.est, ci=T)

##	lavaan 0.6-5 ended normally after 13 iterations								
##									
##	Estimator					ML			
##	Optimizatio	on meth	nod			NLMINB			
##	Number of f	Free pa	arameters			5			
##									
##	Number of c	observa	ations			500			
##									
##	Model Test Us	ser Moo	del:						
##									
##	Test statis	stic				0.000			
##	Degrees of	freedo	om			0			
##									
##	Parameter Est	timates	5:						
##									
##	Standard er	rors			B	ootstrap			
##	Number of r	request	ted bootst	rap draws	i	1000			
##	Number of s	success	sful boots	trap draw	IS	1000			
##									
##	Regressions:								
##			Estimate	Std.Err	z-value	P(> z)	<pre>ci.lower</pre>	<pre>ci.upper</pre>	
##	Dep ~								
##	PR	(b)	0.289	0.049	5.943	0.000	0.191	0.387	
##	Agg	(c)	0.256	0.052	4.946	0.000	0.154	0.364	
##	PR ~								
##	Agg	(a)	0.530	0.040	13.098	0.000	0.446	0.610	
##									
##	Variances:								
##			Estimate	Std.Err	z-value	P(> z)	<pre>ci.lower</pre>	<pre>ci.upper</pre>	
##	.Dep		0.932	0.054	17.230	0.000	0.820	1.032	
##	.PR		0.805	0.054	14.898	0.000	0.699	0.916	
##									
##	Defined Param	neters	:						
##			Estimate	Std.Err	z-value	P(> z)	<pre>ci.lower</pre>	<pre>ci.upper</pre>	
##	ind		0.153	0.028	5.483	0.000	0.099	0.209	
##	total		0.410	0.046	8.855	0.000	0.313	0.503	

Why code the total effect in lavaan?

- We could have just added up the coefficients for the direct and indirect effects
- By coding it in lavaan, however, we can assess the statistical significance of the total effect
- Useful because sometimes the direct and indirect effects are not individually significant but the total effect is
 - May be especially relevant in cases where there are many mediators of small effect

Interpreting the total, direct, and indirect effect coefficients

- The total effect can be interpreted as the *unit increase in* Y expected to occur when X increases by one unit
- The indirect effect can be interpreted as the *unit increase in* Y expected to occur via M when X increases by one unit
- The direct effect can be interpreted as the *unit increase in* Y expected to occur with a unit increase in X over and above the increase transmitted by M
 - Note: 'direct' effect may not actually be direct it may be acting via other mediators not included in our model

Standardised parameters

summary(model1.est, ci=T, standardized=T)

 As with CFA models, standardised parameters can be obtained using:

```
## lavaan 0.6-5 ended normally after 13 iterations
##
##
    Estimator
                                                     ML
##
    Optimization method
                                                 NLMINB
##
    Number of free parameters
                                                      5
##
##
    Number of observations
                                                    500
##
## Model Test User Model:
##
##
    Test statistic
                                                  0.000
##
    Degrees of freedom
                                                      0
##
## Parameter Estimates:
##
##
    Standard errors
                                              Bootstrap
##
    Number of requested bootstrap draws
                                                   1000
##
    Number of successful bootstrap draws
                                                   1000
##
## Regressions:
##
                     Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
##
    Dep ~
##
      PR
                 (b)
                        0.289
                                0.049
                                         5.943
                                                  0.000
                                                           0.191
                                                                    0.387
                        0.256
                                0.052
                                         4.946
                                                  0.000
##
                 (c)
                                                           0.154
                                                                    0.364
      Agg
##
    PR ~
                        0.530
                                0.040 13.098
                                                           0.446
##
                                                  0.000
                                                                    0.610
                 (a)
      Agg
     Std.lv Std.all
##
##
##
      0.289
               0.278
##
      0.256
               0.233
##
      0.530
##
             0.501
##
## Variances:
                     Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
##
##
                       0.932 0.054 17.230
                                                  0.000
                                                           0.820
      .Dep
                                                                    1.032
      .PR
                        0.805
                                0.054
                                        14.898
                                                  0.000
                                                           0.699
                                                                    0.916
##
     Std.lv Std.all
##
##
      0.932
               0.803
      0.805
               0.749
##
##
## Defined Parameters:
                     Estimate Std.Err z-value P(>|z|) ci.lower ci.upper
##
##
                       0.153 0.028 5.483
                                                  0.000
                                                           0.099
      ind
                                                                    0.209
                                         8.855
                                                  0.000
      total
                        0.410
                                0.046
                                                           0.313
                                                                    0.503
##
     Std.lv Std.all
##
               0.139
##
      0.153
      0.410
               0.372
##
```

Reporting path mediation models

Methods

- The model being tested
- e.g. 'Y was regressed on both X and M and M was regressed on X'
- The estimator used (e.g., maximum likelihood estimation)
- The method used to test the significance of indirect effects ('bootstrapped 95% confidence)
- Results
 - Model fit (for over-identified models)
 - The parameter estimates for the path mediation and their statistical significance
 - $\circ~$ Can be useful to present these in a SEM diagram
 - Helps reader better visualise the model
 - The diagrams from R not considered 'publication quality' draw in powerpoint or similar

Reporting path mediation models example of SEM diagram with results

Note. *=significant at p<.05

- Include the key parameter estimates
- Indicate statistically significant paths (e.g. with an '*')
- Include a figure note that explains how statistically significant paths (and at what level) are signified

Reporting path mediation models the indirect effects

- Results
 - The coefficient for the indirect effect and the bootstrapped 95% confidence intervals
 - Common to also report proportion mediation:

$$\frac{indirect}{total}$$

- However, important to be aware of limitations:
 - Big propotion mediation possible when total effect is small makes effect seem more impressive
 - Small proportion mediation even when total effect is big can underplay importance of effect
 - Should be interpreted in context of total effect
- Tricky interpretation if there are a mix of negative and positive effects involved

Extensions of path mediation models

- We can extend our path mediation model in various ways:
 - Several mediators in sequence or parallel
 - Multiple outcomes
 - Multiple predictors
 - Multiple groups (e.g., comparing direct and indirect effects across males and females)
 - Add covariates to adjust for potential confounders

Example: multiple mediation model

Other path analysis models

- Path mediation models are a common application of path models
- But they are just one example
- Anything that can be expressed in terms of regressions between observed variables can be tested as a path model
- Can include ordinal or binary variables
- Can include moderation
- Other common path analysis models include:
 - Autoregressive models for longitudinal data
 - Cross-lagged panel models for longitudinal data

Other path analysis models - AR

 autoregressive models to examine the stability of a construct over time

##creating a Lavaan syntax object for an autoregressive model

Autoregressive<-'AggT3~AggT2 AggT2~AggT1'

Other path analysis models - CLPM

- cross-lagged panel models to examine the relations between constructs over time
 - autoregressive paths control for previous levels of each construct
 - cross-lagged paths capture the relations between the two constructs

creating a Lavaan syntax objecr for a CLPM
CLPM<-'AggT3~AggT2+DepT2
 AggT2~AggT1+DepT1
 DepT3~DepT2+AggT2
 DepT2~DepT1+AggT1'</pre>

Other path analysis models - CLPM with mediation

longitudinal mediation models using a cross-lagged panel model

Making model modifications

- As in CFA models, you *may* want to make some modifications to your initially hypothesised model
 - non-significant paths that you want to trim
 - include some additional paths not initially included
- Remember that this now moves us into exploratory territory where:
 - Model modifications should be substantively as well as statistically justifiable
 - You must be aware of the possibility that you are capitalising on chance
 - You should aim to replicate the modifications in independent data

Cautions regarding path analysis models

- Assumption that the paths represent causal effects is only an assumption
 - Especially if using cross-sectional data
- The parameters are only accurate if the model is correctly specified

Cautions regarding path analysis models - indistinguishable models

Measurement error in path analysis

- Path analysis models use observed variables
- Assumes no measurement error in these variables
- Path coefficients likely to be attenuated due to unmodelled measurement error
- Structural equation models solve this issue
- They are path analysis models where the paths are between latent rather than observed variables
- ...more on this next week

Path analysis summary

- Path analysis can be used to fit sets of regression models
 - Common path analysis model is the path mediation model
 - But very flexible huge range of models that can be tested
- In R, path analysis can be done using the sem() function in lavaan
- Need to be aware that we aren't *testing* causality but assuming it