
Multivariate Statistics with R

Principal Components Analysis
Aja Murray, Aja.Murray@ed.ac.uk

mailto:Aja.Murray@ed.ac.uk


Overview
Week 1: Dimension Reduction (PCA and EFA)

Week 2: Confirmatory Factor Analysis

Week 3: Path Analysis

Week 4: Structural Equation Modeling I

Week 5: Structural Equation Modeling II



This Week
Techniques

Principal Components Analysis (PCA)

Exploratory Factor Analysis (EFA)

Key Functions

vss( )

fa.parallel( )

principal( )

fa( )

Reading: Principal Components Analysis and Exploratory Factor Analysis
Chapters (on Learn under ‘Reading’)



Learning Outcomes

Understand the principles of dimension reduction

Understand thd difference between PCA and EFA

Know how to perform and interpret PCA and EFA in R



Dimension Reduction
Summarise a set of variables in terms of a smaller number of dimensions

e.g., can 10 aggression items summarised in terms of ‘physical’ and ‘verbal’
aggression dimensions?

1. I hit someone

2. I kicked someone

3. I shoved someone

4. I battered someone

5. I physically hurt someone on purpose

6. I deliberately insulted someone

7. I swore at someone

8. I threatened to hurt someone

9. I called someone a nasty name to their face

10. I shouted mean things at someone



Uses of dimension reduction techniques

Theory testing

What are the number and nature of dimensions that best describe a theoretical
construct?

Test construction

How should I group my items into subscales?

Which items are the best measures of my constructs?

Pragmatic

I have multicollinearity issues/too many variables, how can I defensibly combine
my variables?



Our running example
A researcher has collected n=1000 responses to our 10 aggression items

We’ll use this data to illustrate dimension reduction techniques

##        vars    n  mean   sd median trimmed  mad   min  max range  skew kurtosis 
## item1     1 1000  0.02 0.99   0.02    0.02 1.00 -3.83 2.99  6.82  0.00    -0.14 
## item2     2 1000  0.02 1.01   0.02    0.03 0.98 -3.57 3.02  6.59 -0.01    -0.02 
## item3     3 1000  0.02 1.00   0.03    0.02 1.02 -3.38 2.91  6.30 -0.02    -0.14 
## item4     4 1000  0.04 1.01   0.08    0.05 1.02 -3.02 3.31  6.34 -0.06    -0.14 
## item5     5 1000  0.02 0.98   0.03    0.02 1.00 -3.40 2.97  6.37 -0.05     0.02 
## item6     6 1000  0.03 1.01   0.02    0.02 1.00 -2.93 3.28  6.21  0.14     0.06 
## item7     7 1000  0.02 0.96   0.05    0.02 0.97 -2.81 3.40  6.21  0.08     0.18 
## item8     8 1000  0.02 0.96   0.00    0.01 0.96 -2.84 3.39  6.23  0.15    -0.06 
## item9     9 1000  0.04 0.99   0.02    0.04 0.98 -2.84 3.49  6.34  0.04     0.09 
## item10   10 1000 -0.03 0.96  -0.03   -0.05 0.90 -2.81 3.30  6.11  0.16     0.05 
##          se 
## item1  0.03 
## item2  0.03 
## item3  0.03 
## item4  0.03 
## item5  0.03 
## item6  0.03 
## item7  0.03 
## item8  0.03 
## item9  0.03 
## item10 0.03

library(psych)
describe(agg.items)



PCA
Starts with a correlation matrix

##        item1 item2 item3 item4 item5 item6 item7 item8 item9 item10 
## item1   1.00  0.57  0.50  0.44  0.57  0.06  0.15  0.11  0.13   0.07 
## item2   0.57  1.00  0.56  0.51  0.67  0.07  0.18  0.11  0.13   0.04 
## item3   0.50  0.56  1.00  0.46  0.61  0.05  0.13  0.09  0.13   0.03 
## item4   0.44  0.51  0.46  1.00  0.52  0.13  0.21  0.18  0.20   0.12 
## item5   0.57  0.67  0.61  0.52  1.00  0.01  0.13  0.03  0.07   0.01 
## item6   0.06  0.07  0.05  0.13  0.01  1.00  0.57  0.58  0.41   0.46 
## item7   0.15  0.18  0.13  0.21  0.13  0.57  1.00  0.77  0.59   0.60 
## item8   0.11  0.11  0.09  0.18  0.03  0.58  0.77  1.00  0.61   0.63 
## item9   0.13  0.13  0.13  0.20  0.07  0.41  0.59  0.61  1.00   0.50 
## item10  0.07  0.04  0.03  0.12  0.01  0.46  0.60  0.63  0.50   1.00

#compute the correlation matrix for the aggression items
round(cor(agg.items),2)



What PCA does

Repackages the variance from the correlation matrix into a set of
components

components= orthogonal (i.e.,uncorrelated) linear combinations of the original
variables

the first component is the linear combination that accounts for the most
possible variance

the second accounts for second-largest after the variance accounted for by
the first is removed etc.

each component accounts for as much remaining variance as possible

there are as many components are there were variables in original
correlation matrix



Eigendecomposition

Components are formed using an eigendecomposition of the correlation
matrix

Eigendecomposition is a transformation of the correlation matrix to re-
express it in terms of eigenvectors and eigenvalues



Eigenvectors and eigenvalues
There is one eigenvector and one eigenvalue for each component

Eigenvectors are sets of weights (one weight per variable in original correlation
matrix)

e.g., if we had 10 variables each eigenvector would contain 10 weights

Larger weights mean a variable makes a bigger contribution to the component

Eigenvalues are a measure of the size of the variance packaged into a
component

Larger eigenvalues mean that the component accounts for a large proportion of the
variance in the original correlation matrix



Eigendecomposition of aggression item
correlation matrix

We can use the eigen() function to conduct an eigendecomposition for our
10 aggression items

## eigen() decomposition 
## $values 
##  [1] 3.7684958 2.7356804 0.5953319 0.5716398 0.5125667 0.4763628 0.4305519 
##  [8] 0.3697766 0.3200951 0.2194991 
##  
## $vectors 
##             [,1]       [,2]        [,3]        [,4]         [,5]         [,6] 
##  [1,] -0.2870177  0.3199446  0.07143109 -0.43175730  0.563399577 -0.394183123 
##  [2,] -0.3106275  0.3539678 -0.08503881 -0.09909968 -0.001258554 -0.031939338 
##  [3,] -0.2826611  0.3434128  0.02420767 -0.14612253 -0.616734464  0.282948549 
##  [4,] -0.3071276  0.2517745 -0.04400815  0.86277821  0.237590135 -0.002733387 
##  [5,] -0.2873526  0.3965675 -0.02902837 -0.09222646 -0.077814049  0.190005840 
##  [6,] -0.2898209 -0.2887244 -0.78294062 -0.01816988 -0.097574218 -0.219838183 
##  [7,] -0.3821881 -0.2823866 -0.01734628 -0.08471720 -0.063206183  0.014687355 
##  [8,] -0.3652672 -0.3289337  0.02308076 -0.03205596 -0.026148774 -0.019219419 
##  [9,] -0.3298340 -0.2499686  0.58197751  0.10882278 -0.279335864 -0.462173009 
## [10,] -0.3034151 -0.3161771  0.17825030 -0.09562427  0.384038803  0.681844667 
##              [,7]       [,8]        [,9]       [,10] 
##  [1,] -0.35347092 -0.1567593  0.00958351 -0.03651226 
##  [2,]  0.57029316  0.2854264 -0.59385552 -0.02786398 
##  [3,] -0.49368762 -0.1821845 -0.19950563 -0.05558836 
##  [4,] -0.14278153 -0.1281945 -0.02388620 -0.04595395 
##  [5,]  0.28097835  0.1827296  0.74414831  0.20630427 
##  [6,] -0.21718997  0.3327602  0.05858465 -0.01154841 
##  [7,]  0.31835488 -0.4740413  0.15556865 -0.64205513 
##  [8,]  0.13737585 -0.4362779 -0.11390590  0.73046829 
##  [9,] -0.08239528  0.4163793  0.07027187 -0.03812767 
## [10,] -0.18049584  0.3343479 -0.08699177 -0.05216665

eigen(cor(agg.items))



How many components to keep?

Eigendecomposition repackages the variance but does not reduce our
dimensions

Dimension reduction comes from keeping only the largest components

It is assumed the others can be dropped with little loss of information

Our decisions on how many components to keep can be guided by several
methods

Scree plot

Minimum average partial test (MAP)

Parallel analysis

Our decision should also be based on substantive considerations

Do the selected components make theoretical sense given our background
knowledge of the construct?



Kaiser criterion

Keeps number of components with eigenvalue >1

DO NOT USE Kaiser criterion

Often suggests keeping far too many components



Scree plot

Plots the eigenvalues

x-axis is component number

y-axis is eigenvalue

Keep the components with eigenvalues above a kink in the plot



Further scree plot examples
Scree plots vary in how easy it is to interpret them
## [1] 10



Further scree plot examples
## [1] 10



Further scree plot examples
## [1] 10



Minimum average partial test (MAP)
Extracts components iteratively from the correlation matrix

Computes the average squared partial correlation after each extraction

At first this quantity goes down with each component extracted but then it
starts to increase again

MAP keeps the components from point at which the average squared partial
correlation is at its smallest



MAP test for the aggression items
We can obtain the results of the MAP test via the vss( ) function from the
psych package

##  
## Very Simple Structure 
## Call: vss(x = agg.items) 
## Although the VSS complexity 1 shows  7  factors, it is probably more reasonable to think about  2  factors 
## VSS complexity 2 achieves a maximimum of 0.92  with  5  factors 
##  
## The Velicer MAP achieves a minimum of 0.03  with  2  factors  
## BIC achieves a minimum of  NA  with  2  factors 
## Sample Size adjusted BIC achieves a minimum of  NA  with  2  factors 
##  
## Statistics by number of factors  
##   vss1 vss2   map dof   chisq prob sqresid  fit  RMSEA  BIC SABIC complex 
## 1 0.59 0.00 0.153  35 2.5e+03 0.00     9.6 0.59 0.2627 2209  2320     1.0 
## 2 0.88 0.91 0.030  26 3.1e+01 0.22     2.0 0.91 0.0140 -148   -66     1.0 
## 3 0.79 0.92 0.063  18 1.9e+01 0.40     1.7 0.93 0.0067 -106   -48     1.1 
## 4 0.79 0.91 0.099  11 9.2e+00 0.61     1.7 0.93 0.0000  -67   -32     1.2 
## 5 0.80 0.92 0.147   5 3.4e+00 0.64     1.5 0.93 0.0000  -31   -15     1.2 
## 6 0.72 0.91 0.242   0 2.6e-01   NA     1.3 0.95     NA   NA    NA     1.3 
## 7 0.88 0.91 0.422  -4 8.1e-07   NA     1.6 0.93     NA   NA    NA     1.2 
## 8 0.88 0.92 0.466  -7 2.2e-08   NA     1.6 0.93     NA   NA    NA     1.2 
##    eChisq    SRMR eCRMS eBIC 
## 1 4.7e+03 2.3e-01 0.260 4489 
## 2 1.1e+01 1.1e-02 0.014 -169 
## 3 5.2e+00 7.6e-03 0.012 -119 
## 4 3.1e+00 5.8e-03 0.012  -73 
## 5 1.4e+00 4.0e-03 0.012  -33 
## 6 9.9e-02 1.0e-03    NA   NA 
## 7 1.9e-07 1.5e-06    NA   NA 
## 8 5.1e-09 2.4e-07    NA   NA

library(psych)
vss(agg.items)





The MAP values
The averaged squared partial correlation values

## [1] 0.15264717 0.02951950 0.06285463 0.09897900 0.14661427 0.24158082 0.42246750 
## [8] 0.46642588

VSS$map



Parallel analysis
Simulates datasets with same number of participants and variables but no
correlations

Computes an eigendecomposition for the simulated datasets

Compares the average eigenvalue across the simulated datasets for each
component

If a real eigenvalue exceeds the corresponding average eigenvalue from the
simulated datasets it is retained

We can also use alternative methods to compare our real versus gthe
simulated eigenvalues

e.g. 95% percentile of the simulated eigenvalue distributions



Parallel analysis for the aggression items

## Parallel analysis suggests that the number of factors =  2  and the number of components =  2

fa.parallel(agg.items, n.iter=500)



The fa.parallel( ) function
Notice the function also gives us a scree plot

We can use this to find a point of inflection

Use the ‘PC Actual Data’ datapoints

However, if we want to include a scree plot in a report we should construct
our own, e.g.:

eigenvalues<-eigen(cor(agg.items))$values
plot(eigenvalues, type = 'b', pch = 16, 
     main = "Scree Plot", xlab="", ylab="Eigenvalues")
axis(1, at = 1:10, labels = 1:10)



Limitations of scree, MAP, and parallel
analysis

There is no one right answer about the number of components to retain

Scree plot, MAP and parallel analysis frequently disagree

Each method has weaknesses

Scree plots are subjective and may have multiple or no obvious kinks

Parallel analysis sometimes suggest too many components

MAP sometimes suggests too few components

Examining the PCA solutions keeping different numbers of components
should also form part of the decision



Interpreting the components
Once we have decided how many components to keep (or to help us
decide) we examine the PCA solution

We do this based on the component loadings

Component loadings are calculated from the values in the eigenvectors

They can be interpreted as the correlations between variables and components



The component loadings
Component loading matrix

RC1 and RC2 columns show the component loadings

##  
## Loadings: 
##        RC1    RC2    
## item1          0.765 
## item2          0.838 
## item3          0.789 
## item4   0.175  0.706 
## item5          0.861 
## item6   0.738        
## item7   0.866  0.137 
## item8   0.892        
## item9   0.754  0.110 
## item10  0.788        
##  
##                  RC1   RC2 
## SS loadings    3.321 3.183 
## Proportion Var 0.332 0.318 
## Cumulative Var 0.332 0.650

PC2<-principal(r=agg.items, nfactors=2)
PC2$loadings



Interpreting the components
1. I hit someone

2. I kicked someone

3. I shoved someone

4. I battered someone

5. I physically hurt someone on purpose

6. I deliberately insulted someone

7. I swore at someone

8. I threatened to hurt someone

9. I called someone a nasty name to their face

10. I shouted mean things at someone



Rotation of components

Rotation takes an initial PCA solution and transforms it to make it more
interpretable

An initial PCA solution typically has:

has high loadings on the first component

has a mix of positive and negative loadings on subsequent components

is difficult to interpret

We typically try to achieve simple structure with a rotation

each item has a high loading on one component and close to zero loading on all
others



Initial PCA solution for the aggression
items

##  
## Loadings: 
##        PC1    PC2    
## item1   0.557  0.529 
## item2   0.603  0.585 
## item3   0.549  0.568 
## item4   0.596  0.416 
## item5   0.558  0.656 
## item6   0.563 -0.478 
## item7   0.742 -0.467 
## item8   0.709 -0.544 
## item9   0.640 -0.413 
## item10  0.589 -0.523 
##  
##                  PC1   PC2 
## SS loadings    3.768 2.736 
## Proportion Var 0.377 0.274 
## Cumulative Var 0.377 0.650

PC_initial<-principal(r=agg.items, nfactors=2, rotate='none')
PC_initial$loadings



Different types of rotation
The initial (unrotated) loading matrix is transformed by multiplication by a
transformation matrix

Different transformation matrices are used to achieve different
transformations

The most important distinction is between orthogonal versus oblique
rotations

Orthogonal rotations force the components to remain uncorrelated

They include varimax, quartimax and equamax

Oblique rotations allow the components to be correlated

They include oblimin, promax, direct oblimin, and quartimin



Choosing a rotation
Orthogonal rotations are useful for e.g. reducing multicollinearity in
regression

Oblique rotations better reflect the reality that psychological constructs tend
to be correlated

Advice: use an oblique rotation and switch to orthogonal if correlation is very
low

Oblimin is a good choice for oblique rotation

Varimax is a good choice for orthogonal rotation

… but trying a few and comparing is a good idea



Interpreting an oblique rotation
When an orthogonal rotation is used only one loading matrix is produced

When an oblique rotation is used two loading matrices are produced:

structure matrix (correlations between the components and the variables)

pattern matrix (regression weights from the components to the variables)

Pattern is likely to be most useful for interpreting the components



PCA solution for the aggression items
using an oblique rotation

## Loading required namespace: GPArotation

##  
## Loadings: 
##        TC1    TC2    
## item1          0.765 
## item2          0.839 
## item3          0.792 
## item4   0.127  0.698 
## item5          0.869 
## item6   0.744        
## item7   0.864        
## item8   0.896        
## item9   0.753        
## item10  0.795        
##  
##                  TC1   TC2 
## SS loadings    3.322 3.172 
## Proportion Var 0.332 0.317 
## Cumulative Var 0.332 0.649

PC2<-principal(r=agg.items, nfactors=2, rotate='oblimin')

PC2$loadings



How good is my PCA solution?
A good PCA solution explains the variance of the original correlation matrix
in as few components as possible

## Principal Components Analysis 
## Call: principal(r = agg.items, nfactors = 2, rotate = "oblimin") 
## Standardized loadings (pattern matrix) based upon correlation matrix 
##          TC1   TC2   h2   u2 com 
## item1   0.02  0.77 0.59 0.41 1.0 
## item2   0.01  0.84 0.71 0.29 1.0 
## item3  -0.02  0.79 0.62 0.38 1.0 
## item4   0.13  0.70 0.53 0.47 1.1 
## item5  -0.07  0.87 0.74 0.26 1.0 
## item6   0.74 -0.05 0.54 0.46 1.0 
## item7   0.86  0.07 0.77 0.23 1.0 
## item8   0.90 -0.01 0.80 0.20 1.0 
## item9   0.75  0.05 0.58 0.42 1.0 
## item10  0.79 -0.07 0.62 0.38 1.0 
##  
##                        TC1  TC2 
## SS loadings           3.33 3.18 
## Proportion Var        0.33 0.32 
## Cumulative Var        0.33 0.65 
## Proportion Explained  0.51 0.49 
## Cumulative Proportion 0.51 1.00 
##  
##  With component correlations of  
##      TC1  TC2 
## TC1 1.00 0.15 
## TC2 0.15 1.00 
##  
## Mean item complexity =  1 
## Test of the hypothesis that 2 components are sufficient. 
##  
## The root mean square of the residuals (RMSR) is  0.06  
##  with the empirical chi square  338.11  with prob <  4.6e-56  
##  
## Fit based upon off diagonal values = 0.97

principal(r=agg.items, nfactors=2, rotate='oblimin')



Computing scores for the components
After conducting a PCA you may want to create scores for the new
dimensions

e.g., to use in a regression

Simplest method is to sum the scores for all items with loadings >|.3|

Better method is to compute them taking into account the weights



Computing component scores in R

##             TC1        TC2 
## [1,] -0.3533007  0.7753172 
## [2,]  0.6259317 -0.7284820 
## [3,]  0.2482317 -0.2948437 
## [4,]  0.5860367 -0.8585294 
## [5,]  0.3506143  1.2707699 
## [6,] -0.6130446  1.9424753

PC<-principal(r=agg.items, nfactors=2, rotate='oblimin')
scores<-PC$scores
head(scores)



Reporting a PCA
Method

Methods used to decide on number of factors

Rotation method

Results

Results of MAP, parallel analysis, scree test (& any other considerations in choice
of number of components)

How many components were retained

The loading matrix for the chosen solution (pattern for oblique rotations)

Correlations between components (for oblique rotations)

Variance expained by components

Labelling and interpretation of the components



PCA Summary
PCA is a common dimension reduction technique

Steps are:

Decide how many components to keep (scree plot, parallel analysis, MAP test)

Rotate (orthogonal versus oblique)

Interpret loadings

There are many subjective decision points - critical thinking is needed

Number of components is arguably most important decision


