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Exploratory factor analysis
EFA used for identifying the number and nature of dimensions that describe a
psychological construct and their inter-relations

Procedurally similar to PCA but differs in important ways

Uses only the common variance in its calculation

Can give quite different results to PCA under some circumstances

The resulting dimensions are called factors

EFA based on a latent variable model



Latent variable models
Divides the world into observed variables and latent variables (factors)

Observed variables can be measured directly

e.g., scores on IQ subtests

Latent variables inferred based on patterns of observed variable associations

e.g., Spearman’s g

Latent variables generate the correlations between observed variables

e.g., higher g causes higher subtest scores

Observed variables are imperfect indicators (measures) of latent variables

Observed variable scores have both a systematic and a random error component



Latent variable models as an SEM diagram

Latent variables are ellipses

Observed variables are rectangles

Single-headed arrows go from the latent variables to the observed variables

There are also unique variances for the observed variables



Doing EFA
Like PCA, there are a number of decisions:

How many factors?

Which rotation?

Which extraction method?

In EFA we also have to choose an extraction/estimation method



How many factors?
As in PCA, we can use the following tools to help us decide how many factors to
retain:

Scree test

Parallel analysis

MAP test

It is also important to examine the factor solutions for varying numbers of factors

Which solutions make more sense based on our background knowledge of the
construct?

Do some solutions have deficiencies such as minor factors?



Our running example
Let’s return to our aggression example and now run an EFA

We had n=1000 participants with data on the following 10 items:

1. I hit someone

2. I kicked someone

3. I shoved someone

4. I battered someone

5. I physically hurt someone on purpose

6. I deliberately insulted someone

7. I swore at someone

8. I threatened to hurt someone

9. I called someone a nasty name to their face

10. I shouted mean things at someone



How many aggression factors? Scree test
We can plot the eigenvalues and look for a kink in the plot:

eigenvalues<-eigen(cor(agg.items))$values
plot(eigenvalues, type = 'b', pch = 16, 
     main = "Scree Plot", xlab="", ylab="Eigenvalues")
axis(1, at = 1:10, labels = 1:10)



How many aggresion factors? Parallel
analysis

We can conduct a parallel analysis using fa.parallel( )from the psych package:

## Parallel analysis suggests that the number of factors =  2  and the number of components =  2

library(psych)
fa.parallel(agg.items, n.iter=500)



How many aggression factors? MAP
We can conduct a MAP test using vss( ):

##  
## Very Simple Structure 
## Call: vss(x = agg.items) 
## Although the VSS complexity 1 shows  8  factors, it is probably more reasonable to think about  2  factors 
## VSS complexity 2 achieves a maximimum of 0.93  with  6  factors 
##  
## The Velicer MAP achieves a minimum of 0.03  with  2  factors  
## BIC achieves a minimum of  NA  with  2  factors 
## Sample Size adjusted BIC achieves a minimum of  NA  with  2  factors 
##  
## Statistics by number of factors  
##   vss1 vss2   map dof   chisq prob sqresid  fit RMSEA  BIC SABIC complex 
## 1 0.63 0.00 0.150  35 2.4e+03 0.00     8.9 0.63  0.26 2142  2253     1.0 
## 2 0.88 0.92 0.029  26 1.2e+01 0.99     2.0 0.92  0.00 -168   -85     1.0 
## 3 0.79 0.92 0.054  18 6.8e+00 0.99     1.7 0.93  0.00 -118   -60     1.1 
## 4 0.68 0.92 0.106  11 3.4e+00 0.98     1.5 0.94  0.00  -73   -38     1.2 
## 5 0.70 0.92 0.162   5 2.2e+00 0.83     1.4 0.94  0.00  -32   -16     1.2 
## 6 0.79 0.93 0.247   0 4.3e-03   NA     1.3 0.95    NA   NA    NA     1.3 
## 7 0.88 0.91 0.328  -4 2.2e-07   NA     1.7 0.93    NA   NA    NA     1.1 
## 8 0.88 0.91 0.611  -7 1.7e-06   NA     1.7 0.93    NA   NA    NA     1.1 
##    eChisq    SRMR  eCRMS eBIC 
## 1 4.3e+03 2.2e-01 0.2475 4047 
## 2 4.2e+00 6.9e-03 0.0090 -175 
## 3 2.1e+00 4.8e-03 0.0076 -122 
## 4 9.1e-01 3.2e-03 0.0064  -75 
## 5 5.5e-01 2.5e-03 0.0074  -34 
## 6 8.1e-04 9.5e-05     NA   NA 
## 7 4.9e-08 7.4e-07     NA   NA 
## 8 5.7e-07 2.5e-06     NA   NA

library(psych)
vss(agg.items)



Examining the factor solutions
Finally, we draw on information from the factor solutions themselves

We run a series of factor analysis models with different numbers of factors

Look at the loadings and factor correlations:

Are important distinctions blurred when the number of factors is smaller?

Are there minor or ‘methodological’ factors when the number of factors is larger?

Are the factor correlations very high?

Do the factor solutions make theoretical sense?

In this case, given the MAP, scree and parallel analysis results we would likely
want to examine the 1,2 and 3 factor solutions



Conducting EFA in R
We can run our factor analyses using the fa() function

The first argument is the dataset with the items we want to factor analyse

We also need to mention the number of factors we want to extract, e.g.,
nfactors=1

onef<-fa(agg.items, nfactors=1) #EFA with 1 factor



The one-factor solution
To help us choose an optimal number of factors, we can look at the one-factor
solution…

##  
## Loadings: 
##        MR1   
## item1  0.473 
## item2  0.500 
## item3  0.434 
## item4  0.440 
## item5  0.499 
## item6  0.553 
## item7  0.749 
## item8  0.737 
## item9  0.658 
## item10 0.621 
##  
##                  MR1 
## SS loadings    3.333 
## Proportion Var 0.333

onef<-fa(agg.items, nfactors=1) #EFA with 1 factor
onef$loadings #inspect the factor loadings



The two-factor solution
And compare with the two-factor solution…

## Loading required namespace: GPArotation

##  
## Loadings: 
##        MR1    MR2    
## item1          0.698 
## item2          0.798 
## item3          0.677 
## item4          0.656 
## item5          0.836 
## item6   0.686        
## item7   0.879        
## item8   0.914        
## item9   0.653  0.115 
## item10  0.730        
##  
##                  MR1   MR2 
## SS loadings    3.040 2.730 
## Proportion Var 0.304 0.273 
## Cumulative Var 0.304 0.577

##           MR1       MR2 
## MR1 1.0000000 0.2164953 
## MR2 0.2164953 1.0000000

library(psych)
twof<-fa(agg.items, nfactors=2, rotate='oblimin') #EFA with 2 factors

twof$loadings ##inspect the factor loadings

twof$Phi  ## inspect the factor correlations



The three-factor solution
And the three-factor solution

##  
## Loadings: 
##        MR1    MR2    MR3    
## item1                 0.996 
## item2          0.806        
## item3          0.710        
## item4          0.657        
## item5          0.789        
## item6   0.686               
## item7   0.879               
## item8   0.913               
## item9   0.654  0.120        
## item10  0.730               
##  
##                  MR1   MR2   MR3 
## SS loadings    3.039 2.224 0.997 
## Proportion Var 0.304 0.222 0.100 
## Cumulative Var 0.304 0.526 0.626

##           MR1       MR2       MR3 
## MR1 1.0000000 0.2095680 0.1782584 
## MR2 0.2095680 1.0000000 0.7019552 
## MR3 0.1782584 0.7019552 1.0000000

library(psych)
threef<-fa(agg.items, nfactors=3, rotate='oblimin') #EFA with 3 factors
threef$loadings #inspect the factor loadings

threef$Phi # inpsect the factor correlations



Factor extraction in EFA
Factor extraction refers to the method of deriving the factors

PCA is itself an extraction method

In EFA there are a number of factor extraction options:

principal axis factoring

ordinary least squares (OLS)

weighted least squares (WLS)

minres

maximum likelihood (ML)



Principal axis factoring (PAF)
Traditional method

An eigendecomposition of a reduced form of correlation matrix

Diagonals are replaced by communalities

Communalities estimates used as starting point

Based on e.g. multiple squared R

Iteratively updated across successive PAFs

Process terminates when estimates change little across iterations

Focus on common rather than all variance is key EFA vs PCA distinction



Other extraction methods
OLS finds the factor solution that minimises difference between observed and
model-implied covariance matrices

specifically, minimises the sum of squared residuals

WLS up-weights the variables with higher communalities

minres ignores the diagonals

ML finds the factor solution that maximises the likelihood of the observed
covariance matrix



Which to use?
PAF is a good option

minres can provide EFA solutions when other methods fail

minres is the default for the fa( ) function

choice of extraction method usually makes little difference if:

communalities are similar

sample size is large

the number of variables is large



PAF
We can do a factor analysis with PAF by setting fm=‘pa’ in the fa() function:

##  
## Loadings: 
##        PA1    PA2    
## item1          0.698 
## item2          0.798 
## item3          0.677 
## item4          0.656 
## item5          0.836 
## item6   0.687        
## item7   0.879        
## item8   0.913        
## item9   0.653  0.115 
## item10  0.730        
##  
##                  PA1   PA2 
## SS loadings    3.040 2.730 
## Proportion Var 0.304 0.273 
## Cumulative Var 0.304 0.577

##           PA1       PA2 
## PA1 1.0000000 0.2165792 
## PA2 0.2165792 1.0000000

library(psych)
twof<-fa(agg.items, nfactors=2, rotate='oblimin', fm='pa') #EFA with 2 factors
twof$loadings ##inspect the factor loadings

twof$Phi  ## inspect the factor correlations



minres
minres is the default method but we can also explicitly set fm=‘minres’:

##  
## Loadings: 
##        MR1    MR2    
## item1          0.698 
## item2          0.798 
## item3          0.677 
## item4          0.656 
## item5          0.836 
## item6   0.686        
## item7   0.879        
## item8   0.914        
## item9   0.653  0.115 
## item10  0.730        
##  
##                  MR1   MR2 
## SS loadings    3.040 2.730 
## Proportion Var 0.304 0.273 
## Cumulative Var 0.304 0.577

##           MR1       MR2 
## MR1 1.0000000 0.2164953 
## MR2 0.2164953 1.0000000

library(psych)
twof<-fa(agg.items, nfactors=2, rotate='oblimin', fm='minres') #EFA with 2 factors
twof$loadings ##inspect the factor loadings

twof$Phi  ## inspect the factor correlations



Factor rotation
Like in PCA:

Rotation needed to make solution interpretable

Main choice is between oblique vs orthogonal

Oblique often preferable as allows correlated or uncorrelated

Orthogonal rotation yields one loading matrix

Oblique yields both pattern and structure loading matrices

Pattern matrix is usually used as basis for interpretation



Interpreting the factor solution
Label factors on basis of high loading items

##  
## Loadings: 
##        MR1    MR2    
## item1          0.698 
## item2          0.798 
## item3          0.677 
## item4          0.656 
## item5          0.836 
## item6   0.686        
## item7   0.879        
## item8   0.914        
## item9   0.653  0.115 
## item10  0.730        
##  
##                  MR1   MR2 
## SS loadings    3.040 2.730 
## Proportion Var 0.304 0.273 
## Cumulative Var 0.304 0.577

library(psych)
twof<-fa(agg.items, nfactors=2, rotate='oblimin', fm='minres') #EFA with 2 factors
twof$loadings ##inspect the factor loadings



Interpreting the factor solution
Factor 1 could be labelled verbal aggression and factor 2 could be labelled
physical aggression

1. I hit someone

2. I kicked someone

3. I shoved someone

4. I battered someone

5. I physically hurt someone on purpose

6. I deliberately insulted someone

7. I swore at someone

8. I threatened to hurt someone

9. I called someone a nasty name to their face

10. I shouted mean things at someone



The magnitude of factor loadings
How large are the loadings?

Larger loadings suggest that the variables are ‘better’ markers of the underlying
factors

Comfrey & Lee (1992) offered the following rules of thumb:

.71 (50% overlapping variance) are considered excellent

.63 (40% overlapping variance) is very good

.55 (30% overlapping variance) is good

.45 (20% overlapping variance) is fair

.32 (10% overlapping variance) is poor



The magnitude of factor correlations
How distinct are the factors?

##           MR1       MR2 
## MR1 1.0000000 0.2164953 
## MR2 0.2164953 1.0000000

library(psych)
twof<-fa(agg.items, nfactors=2, rotate='oblimin', fm='minres') #EFA with 2 factors
twof$Phi  ## inspect the factor correlations



How much variance is accounted for by the
factors?

We can also check how much variance overall is accounted for by the factors

## Factor Analysis using method =  minres 
## Call: fa(r = agg.items, nfactors = 2, rotate = "oblimin", fm = "minres") 
## Standardized loadings (pattern matrix) based upon correlation matrix 
##          MR1   MR2   h2   u2 com 
## item1   0.03  0.70 0.50 0.50 1.0 
## item2   0.00  0.80 0.64 0.36 1.0 
## item3   0.00  0.68 0.46 0.54 1.0 
## item4   0.02  0.66 0.44 0.56 1.0 
## item5  -0.02  0.84 0.69 0.31 1.0 
## item6   0.69 -0.05 0.46 0.54 1.0 
## item7   0.88  0.02 0.78 0.22 1.0 
## item8   0.91 -0.03 0.83 0.17 1.0 
## item9   0.65  0.12 0.47 0.53 1.1 
## item10  0.73 -0.01 0.53 0.47 1.0 
##  
##                        MR1  MR2 
## SS loadings           3.05 2.74 
## Proportion Var        0.30 0.27 
## Cumulative Var        0.30 0.58 
## Proportion Explained  0.53 0.47 
## Cumulative Proportion 0.53 1.00 
##  
##  With factor correlations of  
##      MR1  MR2 
## MR1 1.00 0.22 
## MR2 0.22 1.00 
##  
## Mean item complexity =  1 
## Test of the hypothesis that 2 factors are sufficient. 
##  
## The degrees of freedom for the null model are  45  and the objective function was  4.85 with Chi Square of  4820.
## The degrees of freedom for the model are 26  and the objective function was  0.01  
##  
## The root mean square of the residuals (RMSR) is  0.01  
## The df corrected root mean square of the residuals is  0.01  
##  
## The harmonic number of observations is  1000 with the empirical chi square  4.25  with prob <  1  
## The total number of observations was  1000  with Likelihood Chi Square =  12.07  with prob <  0.99  
##  
## Tucker Lewis Index of factoring reliability =  1.005 
## RMSEA index =  0  and the 90 % confidence intervals are  0 0 
## BIC =  -167.53 
## Fit based upon off diagonal values = 1 
## Measures of factor score adequacy              
##                                                    MR1  MR2 
## Correlation of (regression) scores with factors   0.96 0.93 
## Multiple R square of scores with factors          0.92 0.87 
## Minimum correlation of possible factor scores     0.84 0.74

twof



Checking the suitability of data for EFA
The first step in an EFA is actually to check the appropriateness of the data:

Does the data look multivariate normal?

Do the relations look linear?

Does the correlation matrix have good factorability?



Multivariate normality
Do the variables have (approximately) continuous measurement scales?

5 or more response options

Examining univariate distributions using histograms



Linearity
Plot linear and lowess lines for pairwise relations and compare



Factorability
EFA focuses on variance common to items

Not much point in an EFA if little variance in common

Use Kaiser-Meyer-Olkin (KMO) test

Provides measure of proportion of variance shared between variables

Can be computed for individual variables or whole correlation matrix

Overall values >.60 and no variable <.50 is ideal



KMO in R

## Kaiser-Meyer-Olkin factor adequacy 
## Call: KMO(r = agg.items) 
## Overall MSA =  0.87 
## MSA for each item =  
##  item1  item2  item3  item4  item5  item6  item7  item8  item9 item10  
##   0.89   0.86   0.90   0.91   0.84   0.92   0.84   0.82   0.94   0.92

KMO(agg.items)



Summary
Steps in EFA are similar to PCA but…

The underlying theory and interpretation is quite different

Their results can differ if there is not a lot of common variance

EFA involves:

Checking data suitability

Choosing number of factors

Factor extraction

Rotation

Interpretation of factors


