Multivariate Statistics with R

Principal Components Analysis

Aja Murray, Aja.Murray@ed.ac.uk

Overview

- Week 1: Dimension Reduction (PCA and EFA)
- Week 2: Confirmatory Factor Analysis
- Week 3: Path Analysis
- Week 4: Structural Equation Modeling I
- Week 5: Structural Equation Modeling II

This Week

- **Fechniques**
	- *Principal Components Analysis (PCA)*
	- *Exploratory Factor Analysis (EFA)*
- Key Functions
	- *vss()*
	- *fa.parallel()*
	- *principal()*
	- \cdot *fa()*
- Reading: *Principal Components Analysis* and *Exploratory Factor Analysis* Chapters (on *Learn* under 'Reading')

Learning Outcomes

- Understand the principles of dimension reduction
- **Understand thd difference between PCA and EFA**
- Know how to perform and interpret PCA and EFA in R

Dimension Reduction

- Summarise a set of variables in terms of a smaller number of dimensions
	- *e.g., can 10 aggression items summarised in terms of 'physical' and 'verbal' aggression dimensions?*
		- *1. I hit someone*
		- *2. I kicked someone*
		- *3. I shoved someone*
		- *4. I battered someone*
		- *5. I physically hurt someone on purpose*
		- *6. I deliberately insulted someone*
		- *7. I swore at someone*
		- *8. I threatened to hurt someone*
		- *9. I called someone a nasty name to their face*
		- *10. I shouted mean things at someone*

Uses of dimension reduction techniques

- Theory testing
	- *What are the number and nature of dimensions that best describe a theoretical construct?*
- **Test construction**
	- *How should I group my items into subscales?*
	- *Which items are the best measures of my constructs?*
- **Pragmatic**
	- *I have multicollinearity issues/too many variables, how can I defensibly combine my variables?*

Our running example

- A researcher has collected n=1000 responses to our 10 aggression items
- We'll use this data to illustrate dimension reduction techniques

#compute the correlation matrix for the aggression items **round(cor(agg.items),2)**

What PCA does

- Repackages the variance from the correlation matrix into a set of **components**
	- *components= orthogonal (i.e.,uncorrelated) linear combinations of the original variables*
- the first component is the linear combination that accounts for the most possible variance
- the second accounts for second-largest after the variance accounted for by the first is removed etc.
- each component accounts for as much remaining variance as possible
- there are as many components are there were variables in original correlation matrix

Eigendecomposition

- Components are formed using an **eigendecomposition** of the correlation matrix
- Eigendecomposition is a transformation of the correlation matrix to reexpress it in terms of **eigenvectors** and **eigenvalues**

Eigenvectors and eigenvalues

- There is one eigenvector and one eigenvalue for each component
	- *Eigenvectors are sets of weights (one weight per variable in original correlation matrix)*
		- e.g., if we had 10 variables each eigenvector would contain 10 weights
		- Larger weights mean a variable makes a bigger contribution to the component
	- *Eigenvalues are a measure of the size of the variance packaged into a component*
		- Larger eigenvalues mean that the component accounts for a large proportion of the variance in the original correlation matrix

Eigendecomposition of aggression item correlation matrix

We can use the eigen() function to conduct an eigendecomposition for our 10 aggression items

```
## eigen() decomposition
 ## $values
 ## [1] 3.7684958 2.7356804 0.5953319 0.5716398 0.5125667 0.4763628 0.4305519
 ## [8] 0.3697766 0.3200951 0.2194991
 ## 
 ## $vectors
  ## [,1] [,2] [,3] [,4] [,5] [,6]
 ## [1,] -0.2870177 0.3199446 0.07143109 -0.43175730 0.563399577 -0.394183123
 ## [2,] -0.3106275 0.3539678 -0.08503881 -0.09909968 -0.001258554 -0.031939338
 ## [3,] -0.2826611 0.3434128 0.02420767 -0.14612253 -0.616734464 0.282948549
 ## [4,] -0.3071276 0.2517745 -0.04400815 0.86277821 0.237590135 -0.002733387
 ## [5,] -0.2873526 0.3965675 -0.02902837 -0.09222646 -0.077814049 0.190005840
 ## [6,] -0.2898209 -0.2887244 -0.78294062 -0.01816988 -0.097574218 -0.219838183
 ## [7,] -0.3821881 -0.2823866 -0.01734628 -0.08471720 -0.063206183 0.014687355
 ## [8,] -0.3652672 -0.3289337 0.02308076 -0.03205596 -0.026148774 -0.019219419
 ## [9,] -0.3298340 -0.2499686 0.58197751 0.10882278 -0.279335864 -0.462173009
 ## [10,] -0.3034151 -0.3161771 0.17825030 -0.09562427 0.384038803 0.681844667
 ## [,7] [,8] [,9] [,10]
 ## [1,] -0.35347092 -0.1567593 0.00958351 -0.03651226
 ## [2,] 0.57029316 0.2854264 -0.59385552 -0.02786398
 ## [3,] -0.49368762 -0.1821845 -0.19950563 -0.05558836
 ## [4,] -0.14278153 -0.1281945 -0.02388620 -0.04595395
 ## [5,] 0.28097835 0.1827296 0.74414831 0.20630427
 ## [6,] -0.21718997 0.3327602 0.05858465 -0.01154841
 ## [7,] 0.31835488 -0.4740413 0.15556865 -0.64205513
 ## [8,] 0.13737585 -0.4362779 -0.11390590 0.73046829
 ## [9,] -0.08239528 0.4163793 0.07027187 -0.03812767
 ## [10,] -0.18049584 0.3343479 -0.08699177 -0.05216665
eigen(cor(agg.items))
```
How many components to keep?

- **Eigendecomposition repackages the variance but does not reduce our** dimensions
- **Dimension reduction comes from keeping only the largest components**
- If is assumed the others can be dropped with little loss of information
- **Dur decisions on how many components to keep can be guided by several** methods
	- *Scree plot*
	- *Minimum average partial test (MAP)*
	- *Parallel analysis*
- Our decision should also be based on substantive considerations
	- *Do the selected components make theoretical sense given our background knowledge of the construct?*

Kaiser criterion

- Keeps number of components with eigenvalue >1
- **DO NOT USE Kaiser criterion**
- **Often suggests keeping far too many components**

Scree plot

Scree Plot

- Plots the eigenvalues
	- *x-axis is component number*
	- *y-axis is eigenvalue*
- Keep the components with eigenvalues above a kink in the plot

Further scree plot examples

Scree plots vary in how easy it is to interpret them

[1] 10

Ш

Further scree plot examples

[1] 10H.

Further scree plot examples

[1] 10H.

Minimum average partial test (MAP)

- **Extracts components iteratively from the correlation matrix**
- Computes the average squared partial correlation after each extraction
- At first this quantity goes down with each component extracted but then it starts to increase again
- MAP keeps the components from point at which the average squared partial correlation is at its smallest

MAP test for the aggression items

We can obtain the results of the MAP test via the vss() function from the psych package


```
## 
## Very Simple Structure
## Call: vss(x = agg.items)
## Although the VSS complexity 1 shows 7 factors, it is probably more reasonable to think about 2 factors
## VSS complexity 2 achieves a maximimum of 0.92 with 5 factors
## 
## The Velicer MAP achieves a minimum of 0.03 with 2 factors 
## BIC achieves a minimum of NA with 2 factors
## Sample Size adjusted BIC achieves a minimum of NA with 2 factors
## 
## Statistics by number of factors 
## vss1 vss2 map dof chisq prob sqresid fit RMSEA BIC SABIC complex
## 1 0.59 0.00 0.153 35 2.5e+03 0.00 9.6 0.59 0.2627 2209 2320 1.0
## 2 0.88 0.91 0.030 26 3.1e+01 0.22 2.0 0.91 0.0140 -148 -66 1.0
## 3 0.79 0.92 0.063 18 1.9e+01 0.40 1.7 0.93 0.0067 -106 -48 1.1
## 4 0.79 0.91 0.099 11 9.2e+00 0.61 1.7 0.93 0.0000 -67 -32 1.2
## 5 0.80 0.92 0.147 5 3.4e+00 0.64 1.5 0.93 0.0000 -31 -15 1.2
## 6 0.72 0.91 0.242 0 2.6e-01 NA 1.3 0.95 NA NA NA 1.3
## 7 0.88 0.91 0.422 -4 8.1e-07 NA 1.6 0.93 NA NA NA 1.2
## 8 0.88 0.92 0.466 -7 2.2e-08 NA 1.6 0.93 NA NA NA 1.2
## eChisq SRMR eCRMS eBIC
## 1 4.7e+03 2.3e-01 0.260 4489
## 2 1.1e+01 1.1e-02 0.014 -169
## 3 5.2e+00 7.6e-03 0.012 -119
## 4 3.1e+00 5.8e-03 0.012 -73
## 5 1.4e+00 4.0e-03 0.012 -33
## 6 9.9e-02 1.0e-03 NA NA
## 7 1.9e-07 1.5e-06 NA NA
## 8 5.1e-09 2.4e-07 NA NA
```
The MAP values

 \blacksquare The averaged squared partial correlation values

VSS\$map

[1] 0.15264717 0.02951950 0.06285463 0.09897900 0.14661427 0.24158082 0.42246750 ## [8] 0.46642588

Parallel analysis

- Simulates datasets with same number of participants and variables but no correlations
- **Computes an eigendecomposition for the simulated datasets**
- **Compares the average eigenvalue across the simulated datasets for each** component
- If a real eigenvalue exceeds the corresponding average eigenvalue from the simulated datasets it is retained
- We can also use alternative methods to compare our real versus gthe simulated eigenvalues
	- *e.g. 95% percentile of the simulated eigenvalue distributions*

Parallel analysis for the aggression items

fa.parallel(agg.items, n.iter=500)

Parallel analysis suggests that the number of factors = 2 and the number of components = 2

The fa.parallel() function

- Notice the function also gives us a scree plot
- We can use this to find a point of inflection
	- *Use the 'PC Actual Data' datapoints*
- **However, if we want to include a scree plot in a report we should construct** our own, e.g.:

```
eigenvalues<-eigen(cor(agg.items))$values
plot(eigenvalues, type = 'b', pch = 16,
    main = "Scree Plot", xlab="", ylab="Eigenvalues")
axis(1, at = 1:10, labels = 1:10)
```


Limitations of scree, MAP, and parallel analysis

- **There is no one right answer about the number of components to retain**
- Scree plot, MAP and parallel analysis frequently disagree
- Each method has weaknesses
	- *Scree plots are subjective and may have multiple or no obvious kinks*
	- *Parallel analysis sometimes suggest too many components*
	- *MAP sometimes suggests too few components*
- Examining the PCA solutions keeping different numbers of components should also form part of the decision

Interpreting the components

- **Dece we have decided how many components to keep (or to help us** decide) we examine the PCA solution
- We do this based on the component loadings
	- *Component loadings are calculated from the values in the eigenvectors*
	- *They can be interpreted as the correlations between variables and components*

The component loadings

- **Component loading matrix**
- RC1 and RC2 columns show the component loadings

```
PC2<-principal(r=agg.items, nfactors=2)
PC2$loadings
```


Interpreting the components

- 1. I hit someone
- 2. I kicked someone
- 3. I shoved someone
- 4. I battered someone
- 5. I physically hurt someone on purpose
- 6. I deliberately insulted someone
- 7. I swore at someone
- 8. I threatened to hurt someone
- 9. I called someone a nasty name to their face
- 10. I shouted mean things at someone

Rotation of components

- Rotation takes an initial PCA solution and transforms it to make it more interpretable
- An initial PCA solution typically has:
	- *has high loadings on the first component*
	- *has a mix of positive and negative loadings on subsequent components*
	- *is difficult to interpret*
- We typically try to achieve *simple structure* with a rotation
	- *each item has a high loading on one component and close to zero loading on all others*

Initial PCA solution for the aggression items

PC_initial<-principal(r=agg.items, nfactors=2, rotate='none') PC_initial\$loadings

Different types of rotation

- The initial (unrotated) loading matrix is transformed by multiplication by a *transformation matrix*
- Different transformation matrices are used to achieve different transformations
- The most important distinction is between *orthogonal* versus *oblique* rotations
	- *Orthogonal rotations force the components to remain uncorrelated*
		- They include varimax, quartimax and equamax
	- *Oblique rotations allow the components to be correlated*
		- They include oblimin, promax, direct oblimin, and quartimin

Choosing a rotation

- Orthogonal rotations are useful for e.g. reducing multicollinearity in regression
- Oblique rotations better reflect the reality that psychological constructs tend to be correlated
- Advice: use an oblique rotation and switch to orthogonal if correlation is very low
	- *Oblimin is a good choice for oblique rotation*
	- *Varimax is a good choice for orthogonal rotation*
	- *… but trying a few and comparing is a good idea*

Interpreting an oblique rotation

- When an orthogonal rotation is used only one loading matrix is produced
- When an oblique rotation is used two loading matrices are produced:
	- *structure matrix (correlations between the components and the variables)*
	- *pattern matrix (regression weights from the components to the variables)*
- **Pattern is likely to be most useful for interpreting the components**

PCA solution for the aggression items using an oblique rotation

PC2<-principal(r=agg.items, nfactors=2, rotate='oblimin')

Loading required namespace: GPArotation

PC2\$loadings

How good is my PCA solution?

principal(r=agg.items, nfactors=2, rotate='oblimin')

A good PCA solution explains the variance of the original correlation matrix in as few components as possible

```
## Principal Components Analysis
## Call: principal(r = agg.items, nfactors = 2, rotate = "oblimin")
## Standardized loadings (pattern matrix) based upon correlation matrix
## TC1 TC2 h2 u2 com
## item1 0.02 0.77 0.59 0.41 1.0
## item2 0.01 0.84 0.71 0.29 1.0
## item3 -0.02 0.79 0.62 0.38 1.0
## item4 0.13 0.70 0.53 0.47 1.1
## item5 -0.07 0.87 0.74 0.26 1.0
## item6 0.74 -0.05 0.54 0.46 1.0
## item7 0.86 0.07 0.77 0.23 1.0
## item8 0.90 -0.01 0.80 0.20 1.0
## item9 0.75 0.05 0.58 0.42 1.0
## item10 0.79 -0.07 0.62 0.38 1.0
## 
## TC1 TC2
## SS loadings 3.33 3.18<br>
## Proportion Var 0.33 0.32<br>
## Cumulative Y
## Proportion Var 0.33 0.32
## Cumulative Var 0.33 0.65
## Proportion Explained 0.51 0.49
## Cumulative Proportion 0.51 1.00
## 
## With component correlations of 
## TC1 TC2
## TC1 1.00 0.15
## TC2 0.15 1.00
## 
## Mean item complexity = 1
## Test of the hypothesis that 2 components are sufficient.
## 
## The root mean square of the residuals (RMSR) is 0.06 
## with the empirical chi square 338.11 with prob < 4.6e-56 
## 
## Fit based upon off diagonal values = 0.97
```
Computing scores for the components

- After conducting a PCA you may want to create scores for the new dimensions
	- *e.g., to use in a regression*
- Simplest method is to sum the scores for all items with loadings >1.3
- **Better method is to compute them taking into account the weights**

Computing component scores in R

PC<-principal(r=agg.items, nfactors=2, rotate='oblimin') scores<-PC\$scores head(scores)

Reporting a PCA

- **Method**
	- *Methods used to decide on number of factors*
	- *Rotation method*
- Results
	- *Results of MAP, parallel analysis, scree test (& any other considerations in choice of number of components)*
	- *How many components were retained*
	- *The loading matrix for the chosen solution (pattern for oblique rotations)*
	- *Correlations between components (for oblique rotations)*
	- *Variance expained by components*
	- *Labelling and interpretation of the components*

PCA Summary

- **PCA** is a common dimension reduction technique
- Steps are:
	- *Decide how many components to keep (scree plot, parallel analysis, MAP test)*
	- *Rotate (orthogonal versus oblique)*
	- *Interpret loadings*
- There are many subjective decision points critical thinking is needed
- Number of components is arguably most important decision