Measurement and Dimensionality

Data Analysis for Psychology in R 3

Dr Josiah King

Psychology, PPLS

University of Edinburgh

Course Overview

multilevel modelling
working with group structured data
regression refresher
the multilevel model
more complex groupings
centering, assumptions, and diagnostics
recap
factor analysis
working with multi-item measures
measurement and dimensionality
exploring underlying constructs (EFA)
testing theoretical models (CFA)
reliability and validity
recap & exam prep

A confession

This week

  • Measurement!
  • Multi-item measures
  • Scoring (Scale scores and “PCA”)

Measurement

Thorndike’s Credo

“Whatever exists at all exists in some amount. To know it thoroughly involves knowing its quantity as well as its quality.”
(Edward L. Thorndike. 1918)

What is measurement?


“The process of assigning numbers to represent properties”
(Campbell, 1920)

“The assignment of numbers to objects or events according to rules”
(Stevens, 1947)

  • At the foundations of all scientific inquiry

  • Too often taken for granted

  • Key question: What do our numbers represent?

Quantifying the unquantifiable?

  • Many things are experienced qualitatively, as matters of degree, and are not easily amenable to direct quantification

  • We should always question whether our numbers truly represent a continuous quantity with homogeneous units

Measurement in Psychology

  • Many psychological phenomena cannot be observed directly:

    • thoughts, feelings, behaviours etc.
  • Grounded in natural language that we discuss every day

    • “aggression”, “intelligence”, “anxiety”
  • Definitions are often fuzzy and lack consensus

  • Result: Confusion and complexity in measurement, with scientific definitions often diverging from non-scientific definitions

What is a “construct”?

What

  • The thing we are intending to quantify

  • In psychology, education etc:

    • a (hopefully useful) abstraction about the world, derived from natural observations
    • often termed a “latent trait” or “ability” (typically denoted \(\theta\)).

Why

  • Simplifies the world and provide a shared language for scientific study

  • Study the same phenomena across diverse contexts.

    • e.g., what does “leadership” look like in hunter-gatherer societies, in the military and in the music industry?

Constructs, measures and data

Example

Are older people more satisfied with life? 112 people from 12 different dwellings (cities/towns) in Scotland. Information on their ages and some measure of life satisfaction.

d3 <- read_csv("https://uoepsy.github.io/data/lmm_lifesatscot.csv")
head(d3)
# A tibble: 6 × 4
    age lifesat dwelling size 
  <dbl>   <dbl> <chr>    <chr>
1    40      31 Aberdeen >100k
2    45      56 Glasgow  >100k
3    40      51 Glasgow  >100k
4    40      55 Dundee   >100k
5    40      41 Dundee   >100k
6    55      69 Perth    <100k


  • Did anyone stop to think - What is lifesat (i.e., life satisfaction)?

  • is someone scoring 69 more than twice as “satisfied with life” as someone scoring 31?

Impact of differences in perspectives

  • Different operationalisations make it difficult to consolidate findings:

    • Jingle fallacy - Using same name to denote different things
    • Jangle fallacy - Using different names to denote same thing

“Nobody wants to use somebody else’s toothbrush”
(Elson et al., 2023)

Impact of differences in perspectives

  • Different operationalisations make it difficult to consolidate findings:

    • Jingle fallacy - Using same name to denote different things
    • Jangle fallacy - Using different names to denote same thing

“Nobody wants to use somebody else’s toothbrush”
(Elson et al., 2023)

Psychometrics

  • Scientific discipline concerned with the construction of psychological measurements

  • Connects theoretical constructs to their domains of observable behaviours

Applications of psychometrics

  • Education

    • Aptitude / ability tests (i.e., standard school tests)
    • Vocational tests
  • Business

    • Selection (e.g., personality, skills)
    • Development (e.g., interests, leadership)
    • Performance (e.g., well-being, engagement)
  • Health

    • Mental health symptoms e.g., anxiety
    • Clinical diagnoses e.g., personality disorders
  • Key takeaway: People make life-changing decisions using psychometric evidence every day

Representational not actual measurement

  • We cannot take our ruler and measure “life satisfaction”

  • We create tests and hope responses tell us something about the construct we are interested in

  • Important: Data is only ever item responses, not the construct itself

  • Psychometrics is pseudo-representational: useful (hopefully) representation of target construct rather than ‘ground truth’ of universe

Testing and measurement are two distinct activities

“When tests are automatically granted the status of measurement, they are that much more easily appropriated as vehicles for social injustice, even when this may well have been the opposite of the intent of the test designer.”
(Derek Briggs 2021)

Alfred Binet (1857-1911) - ‘the father of the intelligence test’
  • Binet’s purpose: diagnostic classification to be able to target educational interventions

  • adopted and implicitly taken as ‘measurement’ and used for group comparisons by advocates of eugenics in 20th century USA.

Testing and measurement are two distinct activities

Concept Definition Scope example
Measurement Assigning numbers to numbers or events according to rules Broad (theoretical/methodological) Quantifying intelligence
Testing Using a specific instrument/procedure to collect numbers Narrow (practical/applied) Administering WAIS to assess “IQ”


When we confuse testing with measurement:

  • Risks reifying constructs that are partly socially defined (e.g., “intelligence”).

  • Enables justifying inequalities (“low scores mean low ability”) without examining bias, cultural context, or systemic barriers.

Thorndike in the 21st Century…

Whatever exists at all exists in some amount. To know it thoroughly involves knowing the quality of how it has been quantified.

Criteria for good measurement

  • To let us consider testing as getting close to measurement, a test must:

    • Assess what it is supposed to assess
    • Be consistent and reliable
    • Produce interpretable scores
    • Be relevant for specific populations
    • Differentiate between people in a fair way


  • In this course we will cover first three and how psychologists evaluate them, last two are context-dependent

  • We’ll talk about this more in later weeks, can you think of any examples of bad measurement?

So what…

  • psychological constructs are complex, multifaceted, and abstract

  • a single question (or “item”) will struggle to capture that complexity with any accuracy

  • hence: multi-item measures

as always, more terminlogy

as always, more terminlogy

Some questions

Don’t do this at home!

“Dear [Insert LLM name here],

here is what we think ‘creativity’ is.


Can you give me 10 items for a questionnaire that capture the different aspects of creativity.

Give me statements that people can rate their agreement with.

Please and thank you!

Yours sincerely,
Josiah King”

BREAK

Dimension Reduction

https://edin.ac/3WjlBWW

groups! dependencies! but not as we know it

longer, wider (faster, stronger?)

ppt question response
P001 Q1 1
P001 Q2 5
P001 Q3 1
P001 Q4 5
P001 Q5 4
P001 Q6 2
P002 Q1 5
P002 Q2 5
P002 Q3 4
P002 Q4 5
P002 Q5 4
P002 Q6 2
P003 Q1 4
P003 Q2 4
P003 Q3 4
P003 Q4 4
P003 Q5 4
P003 Q6 4
P004 Q1 2
P004 Q2 6
P004 Q3 4
P004 Q4 3
P004 Q5 2
P004 Q6 3
P005 Q1 3
P005 Q2 6
P005 Q3 4
P005 Q4 4
P005 Q5 3
P005 Q6 4
P006 Q1 4
P006 Q2 5
P006 Q3 4
P006 Q4 5
P006 Q5 5
P006 Q6 3
P007 Q1 4
P007 Q2 3
P007 Q3 3
P007 Q4 5
P007 Q5 6
P007 Q6 5
P008 Q1 4
P008 Q2 4
P008 Q3 3
P008 Q4 5
P008 Q5 4
P008 Q6 5
P009 Q1 5
P009 Q2 5
P009 Q3 3
P009 Q4 4
P009 Q5 3
P009 Q6 5
P010 Q1 4
P010 Q2 5
P010 Q3 3
P010 Q4 5
P010 Q5 4
P010 Q6 4
P011 Q1 2
P011 Q2 4
P011 Q3 3
P011 Q4 5
P011 Q5 4
P011 Q6 4
P012 Q1 4
P012 Q2 4
P012 Q3 2
P012 Q4 3
P012 Q5 5
P012 Q6 4
P013 Q1 3
P013 Q2 5
P013 Q3 1
P013 Q4 4
P013 Q5 2
P013 Q6 3
P014 Q1 6
P014 Q2 5
P014 Q3 4
P014 Q4 5
P014 Q5 5
P014 Q6 3
P015 Q1 5
P015 Q2 4
P015 Q3 4
P015 Q4 5
P015 Q5 4
P015 Q6 6
P016 Q1 3
P016 Q2 3
P016 Q3 2
P016 Q4 4
P016 Q5 3
P016 Q6 3
P017 Q1 4
P017 Q2 6
P017 Q3 4
P017 Q4 5
P017 Q5 6
P017 Q6 7
P018 Q1 5
P018 Q2 4
P018 Q3 4
P018 Q4 5
P018 Q5 4
P018 Q6 6
P019 Q1 5
P019 Q2 4
P019 Q3 4
P019 Q4 6
P019 Q5 1
P019 Q6 6
P020 Q1 4
P020 Q2 4
P020 Q3 4
P020 Q4 5
P020 Q5 4
P020 Q6 7
P021 Q1 6
P021 Q2 6
P021 Q3 4
P021 Q4 6
P021 Q5 3
P021 Q6 5
P022 Q1 3
P022 Q2 5
P022 Q3 3
P022 Q4 4
P022 Q5 4
P022 Q6 5
P023 Q1 4
P023 Q2 4
P023 Q3 5
P023 Q4 4
P023 Q5 3
P023 Q6 4
P024 Q1 5
P024 Q2 4
P024 Q3 3
P024 Q4 5
P024 Q5 4
P024 Q6 6
P025 Q1 4
P025 Q2 5
P025 Q3 5
P025 Q4 4
P025 Q5 4
P025 Q6 2
P026 Q1 3
P026 Q2 5
P026 Q3 3
P026 Q4 5
P026 Q5 1
P026 Q6 4
P027 Q1 4
P027 Q2 3
P027 Q3 2
P027 Q4 3
P027 Q5 2
P027 Q6 3
P028 Q1 5
P028 Q2 2
P028 Q3 3
P028 Q4 2
P028 Q5 4
P028 Q6 4
P029 Q1 3
P029 Q2 3
P029 Q3 2
P029 Q4 3
P029 Q5 1
P029 Q6 3
P030 Q1 4
P030 Q2 5
P030 Q3 3
P030 Q4 5
P030 Q5 3
P030 Q6 4
P031 Q1 3
P031 Q2 3
P031 Q3 1
P031 Q4 5
P031 Q5 2
P031 Q6 4
P032 Q1 4
P032 Q2 5
P032 Q3 2
P032 Q4 6
P032 Q5 3
P032 Q6 6
P033 Q1 4
P033 Q2 4
P033 Q3 3
P033 Q4 4
P033 Q5 2
P033 Q6 5
P034 Q1 3
P034 Q2 5
P034 Q3 2
P034 Q4 5
P034 Q5 2
P034 Q6 3
P035 Q1 3
P035 Q2 5
P035 Q3 5
P035 Q4 6
P035 Q5 5
P035 Q6 7
P036 Q1 3
P036 Q2 4
P036 Q3 3
P036 Q4 4
P036 Q5 5
P036 Q6 4
P037 Q1 4
P037 Q2 4
P037 Q3 3
P037 Q4 5
P037 Q5 3
P037 Q6 5
P038 Q1 4
P038 Q2 4
P038 Q3 4
P038 Q4 3
P038 Q5 4
P038 Q6 3
P039 Q1 3
P039 Q2 2
P039 Q3 2
P039 Q4 4
P039 Q5 2
P039 Q6 6
P040 Q1 4
P040 Q2 5
P040 Q3 2
P040 Q4 4
P040 Q5 3
P040 Q6 3
P041 Q1 5
P041 Q2 5
P041 Q3 4
P041 Q4 4
P041 Q5 5
P041 Q6 4
P042 Q1 7
P042 Q2 6
P042 Q3 5
P042 Q4 4
P042 Q5 3
P042 Q6 5
P043 Q1 7
P043 Q2 4
P043 Q3 3
P043 Q4 4
P043 Q5 5
P043 Q6 5
P044 Q1 4
P044 Q2 5
P044 Q3 5
P044 Q4 6
P044 Q5 6
P044 Q6 5
P045 Q1 3
P045 Q2 5
P045 Q3 2
P045 Q4 5
P045 Q5 4
P045 Q6 5
P046 Q1 1
P046 Q2 3
P046 Q3 5
P046 Q4 5
P046 Q5 2
P046 Q6 4
P047 Q1 5
P047 Q2 4
P047 Q3 4
P047 Q4 5
P047 Q5 4
P047 Q6 4
P048 Q1 6
P048 Q2 4
P048 Q3 2
P048 Q4 4
P048 Q5 2
P048 Q6 4
P049 Q1 4
P049 Q2 5
P049 Q3 2
P049 Q4 5
P049 Q5 3
P049 Q6 4
P050 Q1 2
P050 Q2 4
P050 Q3 3
P050 Q4 4
P050 Q5 4
P050 Q6 5
P051 Q1 3
P051 Q2 2
P051 Q3 3
P051 Q4 4
P051 Q5 2
P051 Q6 4
P052 Q1 4
P052 Q2 5
P052 Q3 4
P052 Q4 5
P052 Q5 6
P052 Q6 3
P053 Q1 5
P053 Q2 5
P053 Q3 4
P053 Q4 5
P053 Q5 3
P053 Q6 6
P054 Q1 4
P054 Q2 5
P054 Q3 3
P054 Q4 4
P054 Q5 3
P054 Q6 3
P055 Q1 5
P055 Q2 6
P055 Q3 3
P055 Q4 5
P055 Q5 4
P055 Q6 4
P056 Q1 4
P056 Q2 5
P056 Q3 1
P056 Q4 4
P056 Q5 3
P056 Q6 3
P057 Q1 4
P057 Q2 5
P057 Q3 4
P057 Q4 4
P057 Q5 5
P057 Q6 4
P058 Q1 4
P058 Q2 5
P058 Q3 4
P058 Q4 4
P058 Q5 3
P058 Q6 5
P059 Q1 5
P059 Q2 6
P059 Q3 2
P059 Q4 6
P059 Q5 4
P059 Q6 5
P060 Q1 3
P060 Q2 3
P060 Q3 2
P060 Q4 4
P060 Q5 4
P060 Q6 4
P061 Q1 5
P061 Q2 5
P061 Q3 5
P061 Q4 5
P061 Q5 5
P061 Q6 4
P062 Q1 5
P062 Q2 4
P062 Q3 4
P062 Q4 4
P062 Q5 5
P062 Q6 4
P063 Q1 4
P063 Q2 5
P063 Q3 3
P063 Q4 5
P063 Q5 4
P063 Q6 4
P064 Q1 5
P064 Q2 5
P064 Q3 3
P064 Q4 5
P064 Q5 4
P064 Q6 5
P065 Q1 2
P065 Q2 2
P065 Q3 2
P065 Q4 2
P065 Q5 2
P065 Q6 4
P066 Q1 6
P066 Q2 3
P066 Q3 3
P066 Q4 5
P066 Q5 2
P066 Q6 3
P067 Q1 2
P067 Q2 3
P067 Q3 3
P067 Q4 3
P067 Q5 4
P067 Q6 4
P068 Q1 3
P068 Q2 5
P068 Q3 3
P068 Q4 5
P068 Q5 4
P068 Q6 5
P069 Q1 6
P069 Q2 5
P069 Q3 6
P069 Q4 5
P069 Q5 6
P069 Q6 6
P070 Q1 3
P070 Q2 6
P070 Q3 4
P070 Q4 4
P070 Q5 5
P070 Q6 5
P071 Q1 3
P071 Q2 4
P071 Q3 3
P071 Q4 4
P071 Q5 3
P071 Q6 3
P072 Q1 4
P072 Q2 6
P072 Q3 3
P072 Q4 5
P072 Q5 6
P072 Q6 7
P073 Q1 3
P073 Q2 3
P073 Q3 4
P073 Q4 3
P073 Q5 5
P073 Q6 4
P074 Q1 4
P074 Q2 4
P074 Q3 2
P074 Q4 4
P074 Q5 3
P074 Q6 5
P075 Q1 4
P075 Q2 6
P075 Q3 2
P075 Q4 5
P075 Q5 5
P075 Q6 5
P076 Q1 4
P076 Q2 5
P076 Q3 3
P076 Q4 5
P076 Q5 4
P076 Q6 3
P077 Q1 3
P077 Q2 3
P077 Q3 2
P077 Q4 4
P077 Q5 1
P077 Q6 4
P078 Q1 6
P078 Q2 5
P078 Q3 6
P078 Q4 5
P078 Q5 5
P078 Q6 6
P079 Q1 4
P079 Q2 5
P079 Q3 3
P079 Q4 3
P079 Q5 6
P079 Q6 4
P080 Q1 1
P080 Q2 3
P080 Q3 2
P080 Q4 2
P080 Q5 1
P080 Q6 3
P081 Q1 4
P081 Q2 4
P081 Q3 3
P081 Q4 5
P081 Q5 3
P081 Q6 5
P082 Q1 2
P082 Q2 4
P082 Q3 3
P082 Q4 4
P082 Q5 2
P082 Q6 3
P083 Q1 5
P083 Q2 4
P083 Q3 4
P083 Q4 4
P083 Q5 3
P083 Q6 3
P084 Q1 2
P084 Q2 3
P084 Q3 2
P084 Q4 3
P084 Q5 3
P084 Q6 3
P085 Q1 4
P085 Q2 4
P085 Q3 4
P085 Q4 5
P085 Q5 4
P085 Q6 3
P086 Q1 4
P086 Q2 5
P086 Q3 4
P086 Q4 3
P086 Q5 3
P086 Q6 7
P087 Q1 6
P087 Q2 5
P087 Q3 6
P087 Q4 5
P087 Q5 7
P087 Q6 5
P088 Q1 6
P088 Q2 3
P088 Q3 5
P088 Q4 5
P088 Q5 3
P088 Q6 5
P089 Q1 4
P089 Q2 5
P089 Q3 3
P089 Q4 4
P089 Q5 5
P089 Q6 4
P090 Q1 5
P090 Q2 4
P090 Q3 4
P090 Q4 5
P090 Q5 3
P090 Q6 7
P091 Q1 7
P091 Q2 5
P091 Q3 5
P091 Q4 7
P091 Q5 6
P091 Q6 6
P092 Q1 4
P092 Q2 4
P092 Q3 3
P092 Q4 6
P092 Q5 3
P092 Q6 5
P093 Q1 2
P093 Q2 3
P093 Q3 2
P093 Q4 4
P093 Q5 2
P093 Q6 4
P094 Q1 3
P094 Q2 3
P094 Q3 1
P094 Q4 2
P094 Q5 3
P094 Q6 5
P095 Q1 5
P095 Q2 5
P095 Q3 4
P095 Q4 4
P095 Q5 4
P095 Q6 6
P096 Q1 6
P096 Q2 5
P096 Q3 3
P096 Q4 5
P096 Q5 3
P096 Q6 6
P097 Q1 4
P097 Q2 4
P097 Q3 3
P097 Q4 5
P097 Q5 5
P097 Q6 4
P098 Q1 5
P098 Q2 3
P098 Q3 3
P098 Q4 4
P098 Q5 4
P098 Q6 5
P099 Q1 5
P099 Q2 5
P099 Q3 5
P099 Q4 6
P099 Q5 6
P099 Q6 4
P100 Q1 3
P100 Q2 4
P100 Q3 3
P100 Q4 5
P100 Q5 4
P100 Q6 4
P101 Q1 5
P101 Q2 5
P101 Q3 4
P101 Q4 4
P101 Q5 3
P101 Q6 4
P102 Q1 4
P102 Q2 4
P102 Q3 1
P102 Q4 5
P102 Q5 4
P102 Q6 3
P103 Q1 6
P103 Q2 4
P103 Q3 5
P103 Q4 4
P103 Q5 3
P103 Q6 5
P104 Q1 5
P104 Q2 7
P104 Q3 4
P104 Q4 5
P104 Q5 4
P104 Q6 5
P105 Q1 5
P105 Q2 2
P105 Q3 2
P105 Q4 5
P105 Q5 2
P105 Q6 5
P106 Q1 5
P106 Q2 6
P106 Q3 4
P106 Q4 6
P106 Q5 4
P106 Q6 5
P107 Q1 6
P107 Q2 5
P107 Q3 6
P107 Q4 6
P107 Q5 5
P107 Q6 6
P108 Q1 5
P108 Q2 5
P108 Q3 2
P108 Q4 3
P108 Q5 1
P108 Q6 4
P109 Q1 4
P109 Q2 4
P109 Q3 3
P109 Q4 6
P109 Q5 3
P109 Q6 5
P110 Q1 5
P110 Q2 4
P110 Q3 2
P110 Q4 4
P110 Q5 4
P110 Q6 5
P111 Q1 5
P111 Q2 3
P111 Q3 3
P111 Q4 3
P111 Q5 3
P111 Q6 3
P112 Q1 5
P112 Q2 4
P112 Q3 3
P112 Q4 5
P112 Q5 3
P112 Q6 3
P113 Q1 5
P113 Q2 5
P113 Q3 3
P113 Q4 6
P113 Q5 4
P113 Q6 5
P114 Q1 4
P114 Q2 3
P114 Q3 4
P114 Q4 4
P114 Q5 3
P114 Q6 3
P115 Q1 5
P115 Q2 5
P115 Q3 4
P115 Q4 6
P115 Q5 5
P115 Q6 4
P116 Q1 5
P116 Q2 4
P116 Q3 5
P116 Q4 4
P116 Q5 3
P116 Q6 4
P117 Q1 5
P117 Q2 5
P117 Q3 4
P117 Q4 5
P117 Q5 5
P117 Q6 5
P118 Q1 7
P118 Q2 4
P118 Q3 4
P118 Q4 5
P118 Q5 5
P118 Q6 5
P119 Q1 5
P119 Q2 4
P119 Q3 3
P119 Q4 5
P119 Q5 3
P119 Q6 5
P120 Q1 4
P120 Q2 5
P120 Q3 4
P120 Q4 5
P120 Q5 5
P120 Q6 3
P121 Q1 4
P121 Q2 4
P121 Q3 3
P121 Q4 5
P121 Q5 5
P121 Q6 4
P122 Q1 4
P122 Q2 4
P122 Q3 4
P122 Q4 5
P122 Q5 5
P122 Q6 4
P123 Q1 6
P123 Q2 5
P123 Q3 4
P123 Q4 6
P123 Q5 6
P123 Q6 4
P124 Q1 4
P124 Q2 5
P124 Q3 4
P124 Q4 5
P124 Q5 5
P124 Q6 4
P125 Q1 3
P125 Q2 2
P125 Q3 2
P125 Q4 4
P125 Q5 2
P125 Q6 5
P126 Q1 3
P126 Q2 3
P126 Q3 2
P126 Q4 4
P126 Q5 2
P126 Q6 4
P127 Q1 5
P127 Q2 6
P127 Q3 4
P127 Q4 5
P127 Q5 6
P127 Q6 3
P128 Q1 4
P128 Q2 4
P128 Q3 3
P128 Q4 4
P128 Q5 3
P128 Q6 5
P129 Q1 5
P129 Q2 5
P129 Q3 3
P129 Q4 4
P129 Q5 4
P129 Q6 4
P130 Q1 7
P130 Q2 5
P130 Q3 4
P130 Q4 5
P130 Q5 6
P130 Q6 7
P131 Q1 4
P131 Q2 4
P131 Q3 2
P131 Q4 4
P131 Q5 3
P131 Q6 2
P132 Q1 4
P132 Q2 4
P132 Q3 3
P132 Q4 5
P132 Q5 4
P132 Q6 2
P133 Q1 6
P133 Q2 5
P133 Q3 2
P133 Q4 5
P133 Q5 3
P133 Q6 6
P134 Q1 2
P134 Q2 3
P134 Q3 1
P134 Q4 3
P134 Q5 5
P134 Q6 6
P135 Q1 4
P135 Q2 5
P135 Q3 3
P135 Q4 5
P135 Q5 5
P135 Q6 5
P136 Q1 4
P136 Q2 4
P136 Q3 4
P136 Q4 3
P136 Q5 5
P136 Q6 5
P137 Q1 4
P137 Q2 2
P137 Q3 3
P137 Q4 4
P137 Q5 3
P137 Q6 3
P138 Q1 3
P138 Q2 6
P138 Q3 5
P138 Q4 5
P138 Q5 5
P138 Q6 6
P139 Q1 5
P139 Q2 3
P139 Q3 3
P139 Q4 5
P139 Q5 4
P139 Q6 5
P140 Q1 2
P140 Q2 2
P140 Q3 3
P140 Q4 3
P140 Q5 4
P140 Q6 4
P141 Q1 4
P141 Q2 4
P141 Q3 4
P141 Q4 6
P141 Q5 5
P141 Q6 4
P142 Q1 5
P142 Q2 5
P142 Q3 4
P142 Q4 3
P142 Q5 3
P142 Q6 5
P143 Q1 6
P143 Q2 5
P143 Q3 4
P143 Q4 6
P143 Q5 6
P143 Q6 5
P144 Q1 4
P144 Q2 4
P144 Q3 3
P144 Q4 5
P144 Q5 2
P144 Q6 4
P145 Q1 3
P145 Q2 5
P145 Q3 4
P145 Q4 5
P145 Q5 4
P145 Q6 4
P146 Q1 5
P146 Q2 4
P146 Q3 4
P146 Q4 5
P146 Q5 5
P146 Q6 6
P147 Q1 5
P147 Q2 6
P147 Q3 3
P147 Q4 5
P147 Q5 5
P147 Q6 3
P148 Q1 5
P148 Q2 4
P148 Q3 4
P148 Q4 6
P148 Q5 4
P148 Q6 5
P149 Q1 5
P149 Q2 3
P149 Q3 3
P149 Q4 4
P149 Q5 2
P149 Q6 3
P150 Q1 5
P150 Q2 5
P150 Q3 3
P150 Q4 5
P150 Q5 4
P150 Q6 4
P151 Q1 3
P151 Q2 3
P151 Q3 4
P151 Q4 5
P151 Q5 3
P151 Q6 2
P152 Q1 5
P152 Q2 4
P152 Q3 2
P152 Q4 4
P152 Q5 5
P152 Q6 3
P153 Q1 3
P153 Q2 4
P153 Q3 3
P153 Q4 3
P153 Q5 2
P153 Q6 4
P154 Q1 4
P154 Q2 5
P154 Q3 3
P154 Q4 3
P154 Q5 5
P154 Q6 4
P155 Q1 4
P155 Q2 5
P155 Q3 3
P155 Q4 5
P155 Q5 5
P155 Q6 6
P156 Q1 2
P156 Q2 4
P156 Q3 4
P156 Q4 3
P156 Q5 1
P156 Q6 3
P157 Q1 4
P157 Q2 3
P157 Q3 5
P157 Q4 4
P157 Q5 2
P157 Q6 3
P158 Q1 6
P158 Q2 4
P158 Q3 4
P158 Q4 5
P158 Q5 5
P158 Q6 3
P159 Q1 3
P159 Q2 4
P159 Q3 2
P159 Q4 3
P159 Q5 4
P159 Q6 5
P160 Q1 4
P160 Q2 3
P160 Q3 3
P160 Q4 5
P160 Q5 3
P160 Q6 7
P161 Q1 5
P161 Q2 4
P161 Q3 2
P161 Q4 4
P161 Q5 4
P161 Q6 3
P162 Q1 5
P162 Q2 6
P162 Q3 5
P162 Q4 4
P162 Q5 4
P162 Q6 4
P163 Q1 4
P163 Q2 5
P163 Q3 2
P163 Q4 4
P163 Q5 4
P163 Q6 6
P164 Q1 4
P164 Q2 4
P164 Q3 3
P164 Q4 4
P164 Q5 3
P164 Q6 3
P165 Q1 3
P165 Q2 2
P165 Q3 2
P165 Q4 4
P165 Q5 3
P165 Q6 3
P166 Q1 3
P166 Q2 3
P166 Q3 2
P166 Q4 3
P166 Q5 2
P166 Q6 6
P167 Q1 6
P167 Q2 5
P167 Q3 4
P167 Q4 6
P167 Q5 5
P167 Q6 4
P168 Q1 4
P168 Q2 4
P168 Q3 5
P168 Q4 4
P168 Q5 6
P168 Q6 5
P169 Q1 5
P169 Q2 5
P169 Q3 4
P169 Q4 5
P169 Q5 4
P169 Q6 7
P170 Q1 4
P170 Q2 3
P170 Q3 1
P170 Q4 4
P170 Q5 3
P170 Q6 4
P171 Q1 5
P171 Q2 6
P171 Q3 5
P171 Q4 4
P171 Q5 4
P171 Q6 5
P172 Q1 6
P172 Q2 3
P172 Q3 2
P172 Q4 4
P172 Q5 2
P172 Q6 6
P173 Q1 4
P173 Q2 4
P173 Q3 4
P173 Q4 5
P173 Q5 4
P173 Q6 6
P174 Q1 2
P174 Q2 5
P174 Q3 3
P174 Q4 5
P174 Q5 6
P174 Q6 3
P175 Q1 7
P175 Q2 7
P175 Q3 6
P175 Q4 6
P175 Q5 5
P175 Q6 6
P176 Q1 3
P176 Q2 4
P176 Q3 4
P176 Q4 4
P176 Q5 4
P176 Q6 6
P177 Q1 5
P177 Q2 6
P177 Q3 5
P177 Q4 4
P177 Q5 5
P177 Q6 6
P178 Q1 7
P178 Q2 5
P178 Q3 6
P178 Q4 5
P178 Q5 5
P178 Q6 7
P179 Q1 4
P179 Q2 6
P179 Q3 4
P179 Q4 5
P179 Q5 5
P179 Q6 5
P180 Q1 4
P180 Q2 4
P180 Q3 3
P180 Q4 5
P180 Q5 4
P180 Q6 5
P181 Q1 5
P181 Q2 4
P181 Q3 4
P181 Q4 4
P181 Q5 4
P181 Q6 5
P182 Q1 4
P182 Q2 5
P182 Q3 2
P182 Q4 5
P182 Q5 4
P182 Q6 3
P183 Q1 3
P183 Q2 4
P183 Q3 3
P183 Q4 3
P183 Q5 4
P183 Q6 4
P184 Q1 3
P184 Q2 5
P184 Q3 3
P184 Q4 5
P184 Q5 3
P184 Q6 6
P185 Q1 5
P185 Q2 5
P185 Q3 4
P185 Q4 5
P185 Q5 3
P185 Q6 3
P186 Q1 4
P186 Q2 3
P186 Q3 4
P186 Q4 5
P186 Q5 4
P186 Q6 5
P187 Q1 3
P187 Q2 4
P187 Q3 4
P187 Q4 3
P187 Q5 4
P187 Q6 5
P188 Q1 4
P188 Q2 5
P188 Q3 4
P188 Q4 5
P188 Q5 4
P188 Q6 5
P189 Q1 5
P189 Q2 6
P189 Q3 3
P189 Q4 5
P189 Q5 4
P189 Q6 5
P190 Q1 4
P190 Q2 5
P190 Q3 3
P190 Q4 5
P190 Q5 3
P190 Q6 3
P191 Q1 4
P191 Q2 3
P191 Q3 3
P191 Q4 4
P191 Q5 5
P191 Q6 5
P192 Q1 7
P192 Q2 5
P192 Q3 6
P192 Q4 6
P192 Q5 6
P192 Q6 4
P193 Q1 2
P193 Q2 4
P193 Q3 4
P193 Q4 5
P193 Q5 3
P193 Q6 3
P194 Q1 4
P194 Q2 4
P194 Q3 3
P194 Q4 5
P194 Q5 4
P194 Q6 5
P195 Q1 5
P195 Q2 5
P195 Q3 3
P195 Q4 4
P195 Q5 4
P195 Q6 6
P196 Q1 3
P196 Q2 6
P196 Q3 4
P196 Q4 4
P196 Q5 3
P196 Q6 4
P197 Q1 3
P197 Q2 5
P197 Q3 4
P197 Q4 5
P197 Q5 3
P197 Q6 4
P198 Q1 3
P198 Q2 4
P198 Q3 2
P198 Q4 3
P198 Q5 3
P198 Q6 2
P199 Q1 4
P199 Q2 5
P199 Q3 3
P199 Q4 5
P199 Q5 4
P199 Q6 5
P200 Q1 5
P200 Q2 4
P200 Q3 2
P200 Q4 5
P200 Q5 4
P200 Q6 5
P201 Q1 5
P201 Q2 6
P201 Q3 5
P201 Q4 5
P201 Q5 4
P201 Q6 7
P202 Q1 3
P202 Q2 5
P202 Q3 2
P202 Q4 5
P202 Q5 3
P202 Q6 3
P203 Q1 5
P203 Q2 4
P203 Q3 3
P203 Q4 4
P203 Q5 4
P203 Q6 1
P204 Q1 5
P204 Q2 5
P204 Q3 4
P204 Q4 5
P204 Q5 4
P204 Q6 5
P205 Q1 6
P205 Q2 3
P205 Q3 4
P205 Q4 3
P205 Q5 3
P205 Q6 5
P206 Q1 6
P206 Q2 4
P206 Q3 3
P206 Q4 4
P206 Q5 5
P206 Q6 4
P207 Q1 5
P207 Q2 3
P207 Q3 3
P207 Q4 5
P207 Q5 2
P207 Q6 5
P208 Q1 6
P208 Q2 5
P208 Q3 3
P208 Q4 5
P208 Q5 4
P208 Q6 5
P209 Q1 4
P209 Q2 5
P209 Q3 3
P209 Q4 4
P209 Q5 3
P209 Q6 3
P210 Q1 4
P210 Q2 5
P210 Q3 3
P210 Q4 5
P210 Q5 3
P210 Q6 3
P211 Q1 4
P211 Q2 3
P211 Q3 5
P211 Q4 4
P211 Q5 2
P211 Q6 4
P212 Q1 3
P212 Q2 4
P212 Q3 3
P212 Q4 4
P212 Q5 2
P212 Q6 4
P213 Q1 4
P213 Q2 4
P213 Q3 2
P213 Q4 5
P213 Q5 3
P213 Q6 3
P214 Q1 5
P214 Q2 5
P214 Q3 2
P214 Q4 4
P214 Q5 3
P214 Q6 2
P215 Q1 5
P215 Q2 4
P215 Q3 4
P215 Q4 5
P215 Q5 4
P215 Q6 6
P216 Q1 2
P216 Q2 5
P216 Q3 2
P216 Q4 3
P216 Q5 2
P216 Q6 4
P217 Q1 5
P217 Q2 4
P217 Q3 3
P217 Q4 4
P217 Q5 3
P217 Q6 2
P218 Q1 3
P218 Q2 4
P218 Q3 2
P218 Q4 2
P218 Q5 3
P218 Q6 1
P219 Q1 2
P219 Q2 4
P219 Q3 2
P219 Q4 4
P219 Q5 3
P219 Q6 4
P220 Q1 5
P220 Q2 3
P220 Q3 2
P220 Q4 2
P220 Q5 4
P220 Q6 4
P221 Q1 5
P221 Q2 4
P221 Q3 4
P221 Q4 3
P221 Q5 4
P221 Q6 5
P222 Q1 5
P222 Q2 5
P222 Q3 5
P222 Q4 5
P222 Q5 4
P222 Q6 6
P223 Q1 4
P223 Q2 4
P223 Q3 4
P223 Q4 6
P223 Q5 5
P223 Q6 3
P224 Q1 5
P224 Q2 4
P224 Q3 3
P224 Q4 5
P224 Q5 3
P224 Q6 3
P225 Q1 4
P225 Q2 5
P225 Q3 3
P225 Q4 4
P225 Q5 3
P225 Q6 6
P226 Q1 3
P226 Q2 5
P226 Q3 3
P226 Q4 4
P226 Q5 4
P226 Q6 6
P227 Q1 4
P227 Q2 4
P227 Q3 5
P227 Q4 5
P227 Q5 3
P227 Q6 7
P228 Q1 4
P228 Q2 5
P228 Q3 4
P228 Q4 5
P228 Q5 4
P228 Q6 7
P229 Q1 4
P229 Q2 4
P229 Q3 2
P229 Q4 3
P229 Q5 3
P229 Q6 2
P230 Q1 3
P230 Q2 3
P230 Q3 2
P230 Q4 4
P230 Q5 3
P230 Q6 2
P231 Q1 4
P231 Q2 4
P231 Q3 2
P231 Q4 4
P231 Q5 4
P231 Q6 4
P232 Q1 6
P232 Q2 5
P232 Q3 4
P232 Q4 6
P232 Q5 5
P232 Q6 5
P233 Q1 5
P233 Q2 4
P233 Q3 4
P233 Q4 4
P233 Q5 3
P233 Q6 6
P234 Q1 5
P234 Q2 3
P234 Q3 4
P234 Q4 5
P234 Q5 4
P234 Q6 5
P235 Q1 5
P235 Q2 5
P235 Q3 3
P235 Q4 4
P235 Q5 4
P235 Q6 4
P236 Q1 7
P236 Q2 4
P236 Q3 5
P236 Q4 4
P236 Q5 5
P236 Q6 4
P237 Q1 3
P237 Q2 3
P237 Q3 5
P237 Q4 4
P237 Q5 5
P237 Q6 5
P238 Q1 4
P238 Q2 4
P238 Q3 3
P238 Q4 5
P238 Q5 3
P238 Q6 5
P239 Q1 3
P239 Q2 3
P239 Q3 2
P239 Q4 4
P239 Q5 3
P239 Q6 4
P240 Q1 5
P240 Q2 4
P240 Q3 3
P240 Q4 4
P240 Q5 6
P240 Q6 4
P241 Q1 2
P241 Q2 2
P241 Q3 2
P241 Q4 3
P241 Q5 5
P241 Q6 4
P242 Q1 6
P242 Q2 6
P242 Q3 5
P242 Q4 6
P242 Q5 5
P242 Q6 6
P243 Q1 2
P243 Q2 4
P243 Q3 3
P243 Q4 5
P243 Q5 3
P243 Q6 6
P244 Q1 4
P244 Q2 4
P244 Q3 3
P244 Q4 3
P244 Q5 3
P244 Q6 6
P245 Q1 5
P245 Q2 5
P245 Q3 4
P245 Q4 6
P245 Q5 5
P245 Q6 5
P246 Q1 4
P246 Q2 4
P246 Q3 3
P246 Q4 4
P246 Q5 4
P246 Q6 5
P247 Q1 7
P247 Q2 6
P247 Q3 4
P247 Q4 5
P247 Q5 5
P247 Q6 4
P248 Q1 5
P248 Q2 4
P248 Q3 3
P248 Q4 4
P248 Q5 3
P248 Q6 3
P249 Q1 2
P249 Q2 4
P249 Q3 2
P249 Q4 3
P249 Q5 4
P249 Q6 3
P250 Q1 5
P250 Q2 3
P250 Q3 1
P250 Q4 4
P250 Q5 4
P250 Q6 4
P251 Q1 4
P251 Q2 3
P251 Q3 3
P251 Q4 5
P251 Q5 2
P251 Q6 2
P252 Q1 6
P252 Q2 6
P252 Q3 4
P252 Q4 4
P252 Q5 3
P252 Q6 6
P253 Q1 3
P253 Q2 4
P253 Q3 3
P253 Q4 4
P253 Q5 3
P253 Q6 5
P254 Q1 4
P254 Q2 5
P254 Q3 5
P254 Q4 4
P254 Q5 3
P254 Q6 6
P255 Q1 3
P255 Q2 4
P255 Q3 4
P255 Q4 4
P255 Q5 2
P255 Q6 5
P256 Q1 6
P256 Q2 5
P256 Q3 2
P256 Q4 4
P256 Q5 4
P256 Q6 6
P257 Q1 2
P257 Q2 2
P257 Q3 2
P257 Q4 3
P257 Q5 4
P257 Q6 4
P258 Q1 3
P258 Q2 4
P258 Q3 3
P258 Q4 4
P258 Q5 6
P258 Q6 5
P259 Q1 6
P259 Q2 5
P259 Q3 4
P259 Q4 5
P259 Q5 5
P259 Q6 6
P260 Q1 4
P260 Q2 4
P260 Q3 4
P260 Q4 5
P260 Q5 4
P260 Q6 5
P261 Q1 5
P261 Q2 5
P261 Q3 3
P261 Q4 4
P261 Q5 5
P261 Q6 5
P262 Q1 1
P262 Q2 4
P262 Q3 5
P262 Q4 4
P262 Q5 1
P262 Q6 4
P263 Q1 3
P263 Q2 4
P263 Q3 2
P263 Q4 4
P263 Q5 4
P263 Q6 5
P264 Q1 4
P264 Q2 3
P264 Q3 2
P264 Q4 4
P264 Q5 3
P264 Q6 5
P265 Q1 4
P265 Q2 4
P265 Q3 3
P265 Q4 4
P265 Q5 4
P265 Q6 6
P266 Q1 4
P266 Q2 4
P266 Q3 2
P266 Q4 4
P266 Q5 3
P266 Q6 3
P267 Q1 6
P267 Q2 7
P267 Q3 6
P267 Q4 6
P267 Q5 5
P267 Q6 7
P268 Q1 3
P268 Q2 3
P268 Q3 2
P268 Q4 5
P268 Q5 2
P268 Q6 2
P269 Q1 3
P269 Q2 6
P269 Q3 3
P269 Q4 4
P269 Q5 4
P269 Q6 6
P270 Q1 4
P270 Q2 3
P270 Q3 2
P270 Q4 4
P270 Q5 1
P270 Q6 5
P271 Q1 5
P271 Q2 6
P271 Q3 4
P271 Q4 5
P271 Q5 3
P271 Q6 6
P272 Q1 5
P272 Q2 6
P272 Q3 4
P272 Q4 7
P272 Q5 3
P272 Q6 4
P273 Q1 3
P273 Q2 4
P273 Q3 4
P273 Q4 4
P273 Q5 4
P273 Q6 5
P274 Q1 4
P274 Q2 7
P274 Q3 4
P274 Q4 5
P274 Q5 6
P274 Q6 4
P275 Q1 3
P275 Q2 3
P275 Q3 2
P275 Q4 4
P275 Q5 2
P275 Q6 6
P276 Q1 3
P276 Q2 3
P276 Q3 2
P276 Q4 4
P276 Q5 2
P276 Q6 5
P277 Q1 4
P277 Q2 6
P277 Q3 3
P277 Q4 5
P277 Q5 4
P277 Q6 4
P278 Q1 4
P278 Q2 4
P278 Q3 3
P278 Q4 4
P278 Q5 5
P278 Q6 4
P279 Q1 5
P279 Q2 4
P279 Q3 3
P279 Q4 4
P279 Q5 3
P279 Q6 4
P280 Q1 4
P280 Q2 7
P280 Q3 4
P280 Q4 5
P280 Q5 4
P280 Q6 4
P281 Q1 5
P281 Q2 5
P281 Q3 4
P281 Q4 5
P281 Q5 3
P281 Q6 6
P282 Q1 6
P282 Q2 4
P282 Q3 3
P282 Q4 4
P282 Q5 5
P282 Q6 5
P283 Q1 4
P283 Q2 4
P283 Q3 4
P283 Q4 5
P283 Q5 3
P283 Q6 3
P284 Q1 3
P284 Q2 1
P284 Q3 3
P284 Q4 4
P284 Q5 3
P284 Q6 3
P285 Q1 4
P285 Q2 4
P285 Q3 3
P285 Q4 4
P285 Q5 4
P285 Q6 6
P286 Q1 5
P286 Q2 4
P286 Q3 3
P286 Q4 4
P286 Q5 2
P286 Q6 4
P287 Q1 4
P287 Q2 3
P287 Q3 4
P287 Q4 4
P287 Q5 4
P287 Q6 4
P288 Q1 5
P288 Q2 3
P288 Q3 3
P288 Q4 4
P288 Q5 3
P288 Q6 4
P289 Q1 5
P289 Q2 3
P289 Q3 4
P289 Q4 4
P289 Q5 3
P289 Q6 4
P290 Q1 4
P290 Q2 5
P290 Q3 5
P290 Q4 4
P290 Q5 4
P290 Q6 6
P291 Q1 4
P291 Q2 5
P291 Q3 4
P291 Q4 4
P291 Q5 5
P291 Q6 4
P292 Q1 4
P292 Q2 4
P292 Q3 3
P292 Q4 5
P292 Q5 3
P292 Q6 3
P293 Q1 3
P293 Q2 4
P293 Q3 4
P293 Q4 5
P293 Q5 3
P293 Q6 4
P294 Q1 4
P294 Q2 5
P294 Q3 3
P294 Q4 5
P294 Q5 3
P294 Q6 5
P295 Q1 5
P295 Q2 4
P295 Q3 4
P295 Q4 5
P295 Q5 6
P295 Q6 6
P296 Q1 5
P296 Q2 4
P296 Q3 3
P296 Q4 4
P296 Q5 4
P296 Q6 5
P297 Q1 4
P297 Q2 2
P297 Q3 4
P297 Q4 3
P297 Q5 2
P297 Q6 5
P298 Q1 4
P298 Q2 2
P298 Q3 2
P298 Q4 1
P298 Q5 1
P298 Q6 5
P299 Q1 5
P299 Q2 5
P299 Q3 2
P299 Q4 6
P299 Q5 3
P299 Q6 3
P300 Q1 4
P300 Q2 4
P300 Q3 4
P300 Q4 5
P300 Q5 4
P300 Q6 3
P301 Q1 4
P301 Q2 7
P301 Q3 3
P301 Q4 5
P301 Q5 4
P301 Q6 5
P302 Q1 6
P302 Q2 5
P302 Q3 4
P302 Q4 6
P302 Q5 4
P302 Q6 3
P303 Q1 6
P303 Q2 5
P303 Q3 4
P303 Q4 6
P303 Q5 5
P303 Q6 5
P304 Q1 4
P304 Q2 3
P304 Q3 3
P304 Q4 3
P304 Q5 3
P304 Q6 4
P305 Q1 4
P305 Q2 5
P305 Q3 4
P305 Q4 5
P305 Q5 4
P305 Q6 5
P306 Q1 5
P306 Q2 7
P306 Q3 6
P306 Q4 6
P306 Q5 5
P306 Q6 5
P307 Q1 4
P307 Q2 3
P307 Q3 1
P307 Q4 3
P307 Q5 2
P307 Q6 3
P308 Q1 3
P308 Q2 4
P308 Q3 4
P308 Q4 4
P308 Q5 4
P308 Q6 6
P309 Q1 5
P309 Q2 3
P309 Q3 1
P309 Q4 4
P309 Q5 2
P309 Q6 4
P310 Q1 6
P310 Q2 5
P310 Q3 3
P310 Q4 6
P310 Q5 3
P310 Q6 7
P311 Q1 6
P311 Q2 6
P311 Q3 5
P311 Q4 4
P311 Q5 4
P311 Q6 5
P312 Q1 5
P312 Q2 5
P312 Q3 5
P312 Q4 5
P312 Q5 4
P312 Q6 5
P313 Q1 6
P313 Q2 5
P313 Q3 4
P313 Q4 6
P313 Q5 5
P313 Q6 6
P314 Q1 5
P314 Q2 5
P314 Q3 3
P314 Q4 3
P314 Q5 1
P314 Q6 2
P315 Q1 2
P315 Q2 5
P315 Q3 2
P315 Q4 5
P315 Q5 2
P315 Q6 4
P316 Q1 3
P316 Q2 2
P316 Q3 4
P316 Q4 3
P316 Q5 2
P316 Q6 4
P317 Q1 6
P317 Q2 5
P317 Q3 5
P317 Q4 6
P317 Q5 6
P317 Q6 5
P318 Q1 4
P318 Q2 5
P318 Q3 4
P318 Q4 5
P318 Q5 3
P318 Q6 3
P319 Q1 4
P319 Q2 3
P319 Q3 3
P319 Q4 4
P319 Q5 4
P319 Q6 5
P320 Q1 5
P320 Q2 4
P320 Q3 3
P320 Q4 5
P320 Q5 3
P320 Q6 6
P321 Q1 2
P321 Q2 3
P321 Q3 2
P321 Q4 4
P321 Q5 1
P321 Q6 4
P322 Q1 5
P322 Q2 7
P322 Q3 5
P322 Q4 5
P322 Q5 5
P322 Q6 5
P323 Q1 3
P323 Q2 5
P323 Q3 2
P323 Q4 4
P323 Q5 4
P323 Q6 5
P324 Q1 6
P324 Q2 6
P324 Q3 3
P324 Q4 5
P324 Q5 4
P324 Q6 6
P325 Q1 4
P325 Q2 4
P325 Q3 3
P325 Q4 4
P325 Q5 3
P325 Q6 3
P326 Q1 3
P326 Q2 3
P326 Q3 3
P326 Q4 5
P326 Q5 3
P326 Q6 5
P327 Q1 6
P327 Q2 4
P327 Q3 4
P327 Q4 2
P327 Q5 6
P327 Q6 5
P328 Q1 5
P328 Q2 4
P328 Q3 5
P328 Q4 6
P328 Q5 4
P328 Q6 4
P329 Q1 4
P329 Q2 4
P329 Q3 4
P329 Q4 5
P329 Q5 4
P329 Q6 3
P330 Q1 6
P330 Q2 6
P330 Q3 3
P330 Q4 5
P330 Q5 4
P330 Q6 6
P331 Q1 5
P331 Q2 4
P331 Q3 4
P331 Q4 4
P331 Q5 4
P331 Q6 6
P332 Q1 3
P332 Q2 4
P332 Q3 3
P332 Q4 4
P332 Q5 6
P332 Q6 5
P333 Q1 4
P333 Q2 4
P333 Q3 5
P333 Q4 3
P333 Q5 3
P333 Q6 4
P334 Q1 3
P334 Q2 4
P334 Q3 1
P334 Q4 5
P334 Q5 1
P334 Q6 3
P335 Q1 4
P335 Q2 5
P335 Q3 4
P335 Q4 6
P335 Q5 4
P335 Q6 5
P336 Q1 3
P336 Q2 4
P336 Q3 3
P336 Q4 4
P336 Q5 3
P336 Q6 4
P337 Q1 2
P337 Q2 1
P337 Q3 4
P337 Q4 4
P337 Q5 1
P337 Q6 3
P338 Q1 2
P338 Q2 4
P338 Q3 2
P338 Q4 4
P338 Q5 4
P338 Q6 4
P339 Q1 4
P339 Q2 5
P339 Q3 3
P339 Q4 3
P339 Q5 3
P339 Q6 5
P340 Q1 5
P340 Q2 5
P340 Q3 4
P340 Q4 5
P340 Q5 4
P340 Q6 5
P341 Q1 3
P341 Q2 5
P341 Q3 3
P341 Q4 5
P341 Q5 5
P341 Q6 5
P342 Q1 4
P342 Q2 5
P342 Q3 2
P342 Q4 4
P342 Q5 2
P342 Q6 4
P343 Q1 5
P343 Q2 5
P343 Q3 5
P343 Q4 4
P343 Q5 4
P343 Q6 5
P344 Q1 5
P344 Q2 4
P344 Q3 4
P344 Q4 4
P344 Q5 3
P344 Q6 6
P345 Q1 4
P345 Q2 3
P345 Q3 3
P345 Q4 5
P345 Q5 4
P345 Q6 5
P346 Q1 4
P346 Q2 4
P346 Q3 2
P346 Q4 5
P346 Q5 5
P346 Q6 5
P347 Q1 6
P347 Q2 5
P347 Q3 3
P347 Q4 5
P347 Q5 5
P347 Q6 3
P348 Q1 4
P348 Q2 5
P348 Q3 5
P348 Q4 6
P348 Q5 5
P348 Q6 7
P349 Q1 3
P349 Q2 4
P349 Q3 4
P349 Q4 3
P349 Q5 3
P349 Q6 7
P350 Q1 2
P350 Q2 3
P350 Q3 3
P350 Q4 3
P350 Q5 2
P350 Q6 3
P351 Q1 5
P351 Q2 5
P351 Q3 4
P351 Q4 5
P351 Q5 3
P351 Q6 4
P352 Q1 5
P352 Q2 5
P352 Q3 4
P352 Q4 5
P352 Q5 4
P352 Q6 3
P353 Q1 3
P353 Q2 3
P353 Q3 4
P353 Q4 3
P353 Q5 3
P353 Q6 5
P354 Q1 6
P354 Q2 6
P354 Q3 4
P354 Q4 6
P354 Q5 5
P354 Q6 4
P355 Q1 2
P355 Q2 4
P355 Q3 3
P355 Q4 5
P355 Q5 3
P355 Q6 3
P356 Q1 4
P356 Q2 5
P356 Q3 4
P356 Q4 6
P356 Q5 5
P356 Q6 6
P357 Q1 5
P357 Q2 3
P357 Q3 2
P357 Q4 4
P357 Q5 2
P357 Q6 3
P358 Q1 4
P358 Q2 6
P358 Q3 4
P358 Q4 6
P358 Q5 3
P358 Q6 5
P359 Q1 3
P359 Q2 3
P359 Q3 2
P359 Q4 2
P359 Q5 1
P359 Q6 3
P360 Q1 4
P360 Q2 5
P360 Q3 4
P360 Q4 4
P360 Q5 3
P360 Q6 3
P361 Q1 3
P361 Q2 3
P361 Q3 2
P361 Q4 4
P361 Q5 1
P361 Q6 3
P362 Q1 5
P362 Q2 3
P362 Q3 4
P362 Q4 4
P362 Q5 1
P362 Q6 5
P363 Q1 4
P363 Q2 6
P363 Q3 5
P363 Q4 5
P363 Q5 4
P363 Q6 4
P364 Q1 3
P364 Q2 4
P364 Q3 5
P364 Q4 4
P364 Q5 4
P364 Q6 7
P365 Q1 4
P365 Q2 4
P365 Q3 6
P365 Q4 5
P365 Q5 5
P365 Q6 5
P366 Q1 3
P366 Q2 3
P366 Q3 3
P366 Q4 3
P366 Q5 3
P366 Q6 3
P367 Q1 5
P367 Q2 4
P367 Q3 4
P367 Q4 6
P367 Q5 4
P367 Q6 4
P368 Q1 3
P368 Q2 4
P368 Q3 3
P368 Q4 4
P368 Q5 1
P368 Q6 3
P369 Q1 4
P369 Q2 5
P369 Q3 3
P369 Q4 5
P369 Q5 5
P369 Q6 5
P370 Q1 4
P370 Q2 5
P370 Q3 2
P370 Q4 5
P370 Q5 4
P370 Q6 3
P371 Q1 5
P371 Q2 4
P371 Q3 3
P371 Q4 6
P371 Q5 4
P371 Q6 5
P372 Q1 4
P372 Q2 3
P372 Q3 3
P372 Q4 3
P372 Q5 3
P372 Q6 3
P373 Q1 3
P373 Q2 4
P373 Q3 2
P373 Q4 3
P373 Q5 5
P373 Q6 3
P374 Q1 6
P374 Q2 5
P374 Q3 6
P374 Q4 6
P374 Q5 6
P374 Q6 6
P375 Q1 4
P375 Q2 4
P375 Q3 4
P375 Q4 4
P375 Q5 3
P375 Q6 5
P376 Q1 4
P376 Q2 5
P376 Q3 5
P376 Q4 6
P376 Q5 4
P376 Q6 4
P377 Q1 5
P377 Q2 4
P377 Q3 4
P377 Q4 3
P377 Q5 2
P377 Q6 4
P378 Q1 5
P378 Q2 5
P378 Q3 5
P378 Q4 4
P378 Q5 5
P378 Q6 4
P379 Q1 6
P379 Q2 5
P379 Q3 6
P379 Q4 6
P379 Q5 6
P379 Q6 5
P380 Q1 4
P380 Q2 4
P380 Q3 3
P380 Q4 4
P380 Q5 1
P380 Q6 5
P381 Q1 4
P381 Q2 4
P381 Q3 2
P381 Q4 3
P381 Q5 3
P381 Q6 4
P382 Q1 2
P382 Q2 3
P382 Q3 4
P382 Q4 5
P382 Q5 3
P382 Q6 3
P383 Q1 3
P383 Q2 6
P383 Q3 4
P383 Q4 6
P383 Q5 2
P383 Q6 5
P384 Q1 1
P384 Q2 4
P384 Q3 3
P384 Q4 4
P384 Q5 4
P384 Q6 3
P385 Q1 3
P385 Q2 3
P385 Q3 3
P385 Q4 3
P385 Q5 1
P385 Q6 6
P386 Q1 5
P386 Q2 4
P386 Q3 2
P386 Q4 4
P386 Q5 4
P386 Q6 7
P387 Q1 5
P387 Q2 5
P387 Q3 4
P387 Q4 4
P387 Q5 5
P387 Q6 4
P388 Q1 5
P388 Q2 5
P388 Q3 4
P388 Q4 5
P388 Q5 3
P388 Q6 5
P389 Q1 3
P389 Q2 3
P389 Q3 3
P389 Q4 5
P389 Q5 2
P389 Q6 5
P390 Q1 4
P390 Q2 3
P390 Q3 3
P390 Q4 4
P390 Q5 1
P390 Q6 5
P391 Q1 6
P391 Q2 4
P391 Q3 4
P391 Q4 5
P391 Q5 5
P391 Q6 4
P392 Q1 4
P392 Q2 4
P392 Q3 3
P392 Q4 4
P392 Q5 1
P392 Q6 4
P393 Q1 2
P393 Q2 3
P393 Q3 3
P393 Q4 5
P393 Q5 4
P393 Q6 4
P394 Q1 3
P394 Q2 4
P394 Q3 1
P394 Q4 4
P394 Q5 3
P394 Q6 4
P395 Q1 5
P395 Q2 3
P395 Q3 4
P395 Q4 4
P395 Q5 4
P395 Q6 2
P396 Q1 4
P396 Q2 3
P396 Q3 3
P396 Q4 4
P396 Q5 3
P396 Q6 2
P397 Q1 4
P397 Q2 3
P397 Q3 3
P397 Q4 4
P397 Q5 4
P397 Q6 5
P398 Q1 5
P398 Q2 5
P398 Q3 3
P398 Q4 5
P398 Q5 2
P398 Q6 3
P399 Q1 3
P399 Q2 5
P399 Q3 3
P399 Q4 4
P399 Q5 4
P399 Q6 4
P400 Q1 5
P400 Q2 3
P400 Q3 3
P400 Q4 5
P400 Q5 5
P400 Q6 5
P401 Q1 3
P401 Q2 3
P401 Q3 2
P401 Q4 5
P401 Q5 2
P401 Q6 3
P402 Q1 6
P402 Q2 5
P402 Q3 2
P402 Q4 5
P402 Q5 1
P402 Q6 5
P403 Q1 4
P403 Q2 5
P403 Q3 4
P403 Q4 4
P403 Q5 4
P403 Q6 7
P404 Q1 2
P404 Q2 2
P404 Q3 3
P404 Q4 3
P404 Q5 4
P404 Q6 3
P405 Q1 3
P405 Q2 4
P405 Q3 3
P405 Q4 4
P405 Q5 4
P405 Q6 4
P406 Q1 5
P406 Q2 4
P406 Q3 3
P406 Q4 5
P406 Q5 4
P406 Q6 3
P407 Q1 4
P407 Q2 4
P407 Q3 2
P407 Q4 5
P407 Q5 2
P407 Q6 4
P408 Q1 6
P408 Q2 6
P408 Q3 3
P408 Q4 6
P408 Q5 6
P408 Q6 5
P409 Q1 7
P409 Q2 7
P409 Q3 6
P409 Q4 6
P409 Q5 5
P409 Q6 7
P410 Q1 5
P410 Q2 4
P410 Q3 3
P410 Q4 4
P410 Q5 3
P410 Q6 5
P411 Q1 3
P411 Q2 7
P411 Q3 3
P411 Q4 5
P411 Q5 3
P411 Q6 5
P412 Q1 7
P412 Q2 7
P412 Q3 4
P412 Q4 5
P412 Q5 3
P412 Q6 7
P413 Q1 5
P413 Q2 4
P413 Q3 4
P413 Q4 6
P413 Q5 4
P413 Q6 4
P414 Q1 5
P414 Q2 5
P414 Q3 3
P414 Q4 4
P414 Q5 6
P414 Q6 5
P415 Q1 5
P415 Q2 5
P415 Q3 3
P415 Q4 5
P415 Q5 3
P415 Q6 4
P416 Q1 6
P416 Q2 4
P416 Q3 4
P416 Q4 5
P416 Q5 5
P416 Q6 4
P417 Q1 5
P417 Q2 4
P417 Q3 1
P417 Q4 3
P417 Q5 4
P417 Q6 2
P418 Q1 4
P418 Q2 5
P418 Q3 3
P418 Q4 5
P418 Q5 3
P418 Q6 4
P419 Q1 3
P419 Q2 3
P419 Q3 3
P419 Q4 3
P419 Q5 4
P419 Q6 5
P420 Q1 5
P420 Q2 5
P420 Q3 5
P420 Q4 4
P420 Q5 6
P420 Q6 7
P421 Q1 7
P421 Q2 6
P421 Q3 5
P421 Q4 6
P421 Q5 5
P421 Q6 6
P422 Q1 3
P422 Q2 4
P422 Q3 1
P422 Q4 4
P422 Q5 3
P422 Q6 4
P423 Q1 2
P423 Q2 5
P423 Q3 3
P423 Q4 4
P423 Q5 4
P423 Q6 4
P424 Q1 3
P424 Q2 4
P424 Q3 3
P424 Q4 3
P424 Q5 5
P424 Q6 3
P425 Q1 3
P425 Q2 4
P425 Q3 2
P425 Q4 3
P425 Q5 2
P425 Q6 2
P426 Q1 6
P426 Q2 7
P426 Q3 7
P426 Q4 7
P426 Q5 6
P426 Q6 7
P427 Q1 5
P427 Q2 5
P427 Q3 4
P427 Q4 5
P427 Q5 5
P427 Q6 5
P428 Q1 3
P428 Q2 4
P428 Q3 2
P428 Q4 4
P428 Q5 4
P428 Q6 4
P429 Q1 5
P429 Q2 4
P429 Q3 5
P429 Q4 3
P429 Q5 3
P429 Q6 4
P430 Q1 1
P430 Q2 4
P430 Q3 3
P430 Q4 5
P430 Q5 6
P430 Q6 4
P431 Q1 5
P431 Q2 3
P431 Q3 3
P431 Q4 5
P431 Q5 3
P431 Q6 4
P432 Q1 4
P432 Q2 5
P432 Q3 3
P432 Q4 3
P432 Q5 4
P432 Q6 6
P433 Q1 7
P433 Q2 5
P433 Q3 4
P433 Q4 5
P433 Q5 3
P433 Q6 5
P434 Q1 3
P434 Q2 3
P434 Q3 2
P434 Q4 4
P434 Q5 2
P434 Q6 4
P435 Q1 5
P435 Q2 4
P435 Q3 3
P435 Q4 5
P435 Q5 3
P435 Q6 5
P436 Q1 2
P436 Q2 4
P436 Q3 3
P436 Q4 4
P436 Q5 3
P436 Q6 4
P437 Q1 4
P437 Q2 3
P437 Q3 3
P437 Q4 4
P437 Q5 2
P437 Q6 3
P438 Q1 5
P438 Q2 6
P438 Q3 3
P438 Q4 5
P438 Q5 4
P438 Q6 5
P439 Q1 7
P439 Q2 3
P439 Q3 3
P439 Q4 3
P439 Q5 4
P439 Q6 5
P440 Q1 3
P440 Q2 4
P440 Q3 3
P440 Q4 5
P440 Q5 3
P440 Q6 6
P441 Q1 5
P441 Q2 4
P441 Q3 4
P441 Q4 5
P441 Q5 3
P441 Q6 3
P442 Q1 6
P442 Q2 3
P442 Q3 4
P442 Q4 5
P442 Q5 3
P442 Q6 5
P443 Q1 4
P443 Q2 3
P443 Q3 3
P443 Q4 5
P443 Q5 4
P443 Q6 6
P444 Q1 3
P444 Q2 4
P444 Q3 2
P444 Q4 4
P444 Q5 4
P444 Q6 5
P445 Q1 5
P445 Q2 4
P445 Q3 4
P445 Q4 4
P445 Q5 4
P445 Q6 3
P446 Q1 2
P446 Q2 4
P446 Q3 4
P446 Q4 5
P446 Q5 5
P446 Q6 6
P447 Q1 4
P447 Q2 5
P447 Q3 1
P447 Q4 4
P447 Q5 4
P447 Q6 2
P448 Q1 5
P448 Q2 7
P448 Q3 4
P448 Q4 5
P448 Q5 4
P448 Q6 5
P449 Q1 3
P449 Q2 5
P449 Q3 3
P449 Q4 5
P449 Q5 4
P449 Q6 5
P450 Q1 2
P450 Q2 3
P450 Q3 2
P450 Q4 3
P450 Q5 1
P450 Q6 4
P451 Q1 4
P451 Q2 4
P451 Q3 2
P451 Q4 2
P451 Q5 4
P451 Q6 4
P452 Q1 2
P452 Q2 3
P452 Q3 3
P452 Q4 4
P452 Q5 3
P452 Q6 4
P453 Q1 4
P453 Q2 5
P453 Q3 4
P453 Q4 4
P453 Q5 2
P453 Q6 3
P454 Q1 5
P454 Q2 5
P454 Q3 4
P454 Q4 5
P454 Q5 6
P454 Q6 4
P455 Q1 2
P455 Q2 4
P455 Q3 2
P455 Q4 5
P455 Q5 2
P455 Q6 4
P456 Q1 4
P456 Q2 3
P456 Q3 3
P456 Q4 4
P456 Q5 4
P456 Q6 4
P457 Q1 5
P457 Q2 6
P457 Q3 3
P457 Q4 6
P457 Q5 5
P457 Q6 7
P458 Q1 2
P458 Q2 5
P458 Q3 3
P458 Q4 3
P458 Q5 4
P458 Q6 4
P459 Q1 4
P459 Q2 4
P459 Q3 2
P459 Q4 4
P459 Q5 4
P459 Q6 3
P460 Q1 3
P460 Q2 6
P460 Q3 4
P460 Q4 6
P460 Q5 4
P460 Q6 5
P461 Q1 6
P461 Q2 6
P461 Q3 3
P461 Q4 6
P461 Q5 5
P461 Q6 5
P462 Q1 6
P462 Q2 6
P462 Q3 5
P462 Q4 5
P462 Q5 4
P462 Q6 3
P463 Q1 5
P463 Q2 3
P463 Q3 1
P463 Q4 5
P463 Q5 3
P463 Q6 4
P464 Q1 4
P464 Q2 4
P464 Q3 4
P464 Q4 4
P464 Q5 3
P464 Q6 4
P465 Q1 6
P465 Q2 5
P465 Q3 4
P465 Q4 5
P465 Q5 2
P465 Q6 5
P466 Q1 4
P466 Q2 4
P466 Q3 3
P466 Q4 3
P466 Q5 3
P466 Q6 4
P467 Q1 5
P467 Q2 6
P467 Q3 3
P467 Q4 7
P467 Q5 4
P467 Q6 4
P468 Q1 5
P468 Q2 6
P468 Q3 2
P468 Q4 3
P468 Q5 4
P468 Q6 4
P469 Q1 4
P469 Q2 5
P469 Q3 3
P469 Q4 4
P469 Q5 3
P469 Q6 5
P470 Q1 4
P470 Q2 6
P470 Q3 3
P470 Q4 5
P470 Q5 3
P470 Q6 5
P471 Q1 3
P471 Q2 4
P471 Q3 6
P471 Q4 3
P471 Q5 3
P471 Q6 4
P472 Q1 3
P472 Q2 2
P472 Q3 2
P472 Q4 4
P472 Q5 2
P472 Q6 2
P473 Q1 5
P473 Q2 5
P473 Q3 4
P473 Q4 5
P473 Q5 6
P473 Q6 5
P474 Q1 3
P474 Q2 4
P474 Q3 4
P474 Q4 4
P474 Q5 1
P474 Q6 4
P475 Q1 3
P475 Q2 3
P475 Q3 4
P475 Q4 4
P475 Q5 1
P475 Q6 4
P476 Q1 2
P476 Q2 4
P476 Q3 5
P476 Q4 4
P476 Q5 3
P476 Q6 3
P477 Q1 3
P477 Q2 4
P477 Q3 3
P477 Q4 4
P477 Q5 3
P477 Q6 6
P478 Q1 6
P478 Q2 4
P478 Q3 5
P478 Q4 6
P478 Q5 6
P478 Q6 5
P479 Q1 2
P479 Q2 5
P479 Q3 2
P479 Q4 4
P479 Q5 3
P479 Q6 5
P480 Q1 4
P480 Q2 4
P480 Q3 2
P480 Q4 5
P480 Q5 2
P480 Q6 3
P481 Q1 4
P481 Q2 3
P481 Q3 6
P481 Q4 4
P481 Q5 3
P481 Q6 4
P482 Q1 6
P482 Q2 6
P482 Q3 4
P482 Q4 6
P482 Q5 7
P482 Q6 6
P483 Q1 4
P483 Q2 3
P483 Q3 2
P483 Q4 3
P483 Q5 4
P483 Q6 4
P484 Q1 4
P484 Q2 5
P484 Q3 4
P484 Q4 5
P484 Q5 4
P484 Q6 5
P485 Q1 5
P485 Q2 5
P485 Q3 1
P485 Q4 3
P485 Q5 2
P485 Q6 5
P486 Q1 5
P486 Q2 6
P486 Q3 4
P486 Q4 7
P486 Q5 6
P486 Q6 5
P487 Q1 2
P487 Q2 3
P487 Q3 2
P487 Q4 3
P487 Q5 1
P487 Q6 3
P488 Q1 3
P488 Q2 3
P488 Q3 4
P488 Q4 6
P488 Q5 3
P488 Q6 6
P489 Q1 3
P489 Q2 5
P489 Q3 4
P489 Q4 3
P489 Q5 3
P489 Q6 3
P490 Q1 4
P490 Q2 4
P490 Q3 3
P490 Q4 4
P490 Q5 6
P490 Q6 6
P491 Q1 5
P491 Q2 5
P491 Q3 4
P491 Q4 5
P491 Q5 3
P491 Q6 6
P492 Q1 5
P492 Q2 5
P492 Q3 5
P492 Q4 7
P492 Q5 5
P492 Q6 5
P493 Q1 4
P493 Q2 4
P493 Q3 3
P493 Q4 5
P493 Q5 2
P493 Q6 4
P494 Q1 2
P494 Q2 4
P494 Q3 1
P494 Q4 4
P494 Q5 4
P494 Q6 5
P495 Q1 4
P495 Q2 5
P495 Q3 3
P495 Q4 5
P495 Q5 2
P495 Q6 6
P496 Q1 4
P496 Q2 4
P496 Q3 3
P496 Q4 4
P496 Q5 4
P496 Q6 6
P497 Q1 4
P497 Q2 4
P497 Q3 3
P497 Q4 3
P497 Q5 3
P497 Q6 4
P498 Q1 2
P498 Q2 3
P498 Q3 3
P498 Q4 4
P498 Q5 3
P498 Q6 3
P499 Q1 4
P499 Q2 5
P499 Q3 3
P499 Q4 4
P499 Q5 2
P499 Q6 4
P500 Q1 5
P500 Q2 4
P500 Q3 4
P500 Q4 3
P500 Q5 4
P500 Q6 4
ppt
life satisfaction
Q1 Q2 Q3 Q4 Q5 Q6
P001 1 5 1 5 4 2
P002 5 5 4 5 4 2
P003 4 4 4 4 4 4
P004 2 6 4 3 2 3
P005 3 6 4 4 3 4
P006 4 5 4 5 5 3

Scale Scores?

Q wording
Q1 Overall, I am satisfied with my life.
Q2 In most ways my life is close to my ideal.
Q3 The conditions of my life are excellent.
Q4 I have gotten the important things I want in life.
Q5 If I could live my life over, I would change almost nothing.
Q6 My life has turned out better than I expected it would.
ppt Q1 Q2 Q3 Q4 Q5 Q6 LFSAT
P001 1 5 1 5 4 2 18
P002 5 5 4 5 4 2 25
P003 4 4 4 4 4 4 24
P004 2 6 4 3 2 3 20
P005 3 6 4 4 3 4 24
P006 4 5 4 5 5 3 26
  • each question contains error (because of wording, respondents mood, the context, misunderstanding etc).

  • combine multiple items (e.g., by averaging or summing them) and we hope that the random errors cancel out, and the signal of the true construct becomes clearer

Scale Scores?

Pros:

  • a useful tool in applied settings - the number is always calculated the same way

Cons:

  • ignores differences in item quality
    • all questions are equally representative of “life satisfaction”
  • assumes ‘unidimensionality’
    • all questions capture 1 thing, and that 1 thing is “life satisfaction”

quick refresher

  • Variance = Deviance around the mean of a single variable

  • Covariance = Representation of how two variables change together

  • Correlation = Standardised version of covariance

Covariance/Correlation Matrices

Assumption throughout this block: covariance between two items is because they measure the same thing(s) (in theory!)

Q wording
Q1 Overall, I am satisfied with my life.
Q2 In most ways my life is close to my ideal.
Q3 The conditions of my life are excellent.
Q4 I have gotten the important things I want in life.
Q5 If I could live my life over, I would change almost nothing.
Q6 My life has turned out better than I expected it would.
lifesat_data6 |> 
  select(-ppt) |>
  cor()
     Q1   Q2   Q3   Q4   Q5   Q6
Q1 1.00 0.36 0.37 0.36 0.34 0.26
Q2 0.36 1.00 0.34 0.45 0.39 0.26
Q3 0.37 0.34 1.00 0.35 0.37 0.30
Q4 0.36 0.45 0.35 1.00 0.34 0.25
Q5 0.34 0.39 0.37 0.34 1.00 0.25
Q6 0.26 0.26 0.30 0.25 0.25 1.00

“variables” and “dimensions”

Q wording
Q1 Overall, I am satisfied with my life.
Q2 In most ways my life is close to my ideal.
library(psych)
lifesat_data6 |>
  select(Q1:Q2) |>
  pairs.panels()

more variables and dimensions

Q wording
Q1 Overall, I am satisfied with my life.
Q2 In most ways my life is close to my ideal.
Q3 The conditions of my life are excellent.
Q4 I have gotten the important things I want in life.
Q5 If I could live my life over, I would change almost nothing.
Q6 My life has turned out better than I expected it would.
lifesat_data6 |>
  select(-ppt) |>
  pairs.panels()

more variables and more dimensions

Q wording
Q1 Overall, I am satisfied with my life.
Q2 In most ways my life is close to my ideal.
Q3 The conditions of my life are excellent.
Q4 I have gotten the important things I want in life.
Q5 If I could live my life over, I would change almost nothing.
Q6 My life has turned out better than I expected it would.
Q7 I feel happy and content most days.
Q8 I experience joy and pleasure regularly in my daily life.
Q9 I feel a sense of inner peace and satisfaction.
Q10 I wake up most mornings feeling positive about the day ahead.
lifesat_data10 |>
  select(-ppt) |>
  pairs.panels()

Eurgh… hard to see!

more variables and more dimensions (2)

Q wording
Q1 Overall, I am satisfied with my life.
Q2 In most ways my life is close to my ideal.
Q3 The conditions of my life are excellent.
Q4 I have gotten the important things I want in life.
Q5 If I could live my life over, I would change almost nothing.
Q6 My life has turned out better than I expected it would.
Q7 I feel happy and content most days.
Q8 I experience joy and pleasure regularly in my daily life.
Q9 I feel a sense of inner peace and satisfaction.
Q10 I wake up most mornings feeling positive about the day ahead.
lifesat_data10 |>
  select(-ppt) |>
  cor() |> 
  heatmap()

Think: “buckets” of co-variation!

more variables and more dimensions (2)

Q wording
Q1 Overall, I am satisfied with my life.
Q2 In most ways my life is close to my ideal.
Q3 I feel happy and content most days.
Q4 The conditions of my life are excellent.
Q5 I experience joy and pleasure regularly in my daily life.
Q6 I have gotten the important things I want in life.
Q7 I feel a sense of inner peace and satisfaction.
Q8 If I could live my life over, I would change almost nothing.
Q9 I wake up most mornings feeling positive about the day ahead.
Q10 My life has turned out better than I expected it would.
lifesat_data10 |>
  select(-ppt) |>
  cor() |> 
  heatmap()

Visibility of the “buckets” depends on ordering of the items!

how many dimensions can you think in?

Three variables measuring unrelated things:

Rate agreement on:

  • Q1: I am the life and soul of the party
  • Q2: I like penguins
  • Q3: I enjoy studying statistics

Three variables perfectly measuring the exact same thing

Time spent looking at phone last week:

  • In hours
  • In days
  • In weeks

Three variables measuring the same thing but differently

Rate agreement on:

  • Q1: I think cake is the best food
  • Q2: I feel great when I eat cake
  • Q3: I often eat cake

how many dimensions can you think in?

Three variables measuring unrelated things:

Rate agreement on:

  • Q1: I am the life and soul of the party
  • Q2: I like penguins
  • Q3: I enjoy studying statistics

Three variables perfectly measuring the exact same thing

Time spent looking at phone last week:

  • In hours
  • In days
  • In weeks

Three variables measuring the same thing but differently

Rate agreement on:

  • Q1: I think cake is the best food
  • Q2: I feel great when I eat cake
  • Q3: I often eat cake

how many dimensions can you think in? (2)

Three variables measuring unrelated things:

Rate agreement on:

  • Q1: I am the life and soul of the party
  • Q2: I like penguins
  • Q3: I enjoy studying statistics

Three variables perfectly measuring the exact same thing

Time spent looking at phone last week:

  • In hours
  • In days
  • In weeks

Three variables measuring the same thing but differently

Rate agreement on:

  • Q1: I think cake is the best food
  • Q2: I feel great when I eat cake
  • Q3: I enjoy studying statistics

Principal Component Analysis (PCA)

In short:

  • re-express covariances between \(k\) items as \(k\) dimensions

  • dimensions are termed “components” and are orthogonal (perpendicular/uncorrelated)

  • dimensions sequentially capture most variance

eigendecomposition

In short:

  • The math behind PCA

It’s a lot
We don’t need to understand it.

source: https://it.memedroid.com/memes/detail/3218300/And-thats-why-my-life-is-so-hard

Some terms will come up…

  • “eigenvector”
    • direction of each dimension (relative to our original variables)
    • which variables is the dimension related to?
  • “eigenvalue”
    • magnitude of each dimension
    • how much variance is captured by the dimension?

PCA in R

lifesat_data6 |>
  select(-ppt) |>
  cor()
     Q1   Q2   Q3   Q4   Q5   Q6
Q1 1.00 0.36 0.37 0.36 0.34 0.26
Q2 0.36 1.00 0.34 0.45 0.39 0.26
Q3 0.37 0.34 1.00 0.35 0.37 0.30
Q4 0.36 0.45 0.35 1.00 0.34 0.25
Q5 0.34 0.39 0.37 0.34 1.00 0.25
Q6 0.26 0.26 0.30 0.25 0.25 1.00
library(psych)
principal(lifesat_data6[,-1], nfactors = 6, rotate = "none")  
  • principal() can take a covariance matrix, a correlation matrix, or the raw data.
  • rotate = "none" is saying that we want these dimensions to be orthogonal (in future weeks we’ll mix things up)

PCA in R (2)

lifesat_data6 |>
  select(-ppt) |>
  cor()
     Q1   Q2   Q3   Q4   Q5   Q6
Q1 1.00 0.36 0.37 0.36 0.34 0.26
Q2 0.36 1.00 0.34 0.45 0.39 0.26
Q3 0.37 0.34 1.00 0.35 0.37 0.30
Q4 0.36 0.45 0.35 1.00 0.34 0.25
Q5 0.34 0.39 0.37 0.34 1.00 0.25
Q6 0.26 0.26 0.30 0.25 0.25 1.00
library(psych)
principal(lifesat_data6[,-1], nfactors = 6, rotate = "none")  

the reduction: how many components do we keep?

how many/how much variation do you want to keep?

the reduction: how many components do we keep?

scree plots (these are the eigenvalues - the magnitudes)

the reduction: how many components do we keep?

parallel analysis

Parallel analysis suggests that the number of factors =  NA  and the number of components =  1 

minimum average partial


Very Simple Structure
Call: vss(x = x, n = n, rotate = rotate, diagonal = diagonal, fm = fm, 
    n.obs = n.obs, plot = plot, title = title, use = use, cor = cor)
VSS complexity 1 achieves a maximimum of 0.72  with  1  factors
VSS complexity 2 achieves a maximimum of 0.75  with  2  factors

The Velicer MAP achieves a minimum of 0.04  with  1  factors 
BIC achieves a minimum of  -44.6  with  1  factors
Sample Size adjusted BIC achieves a minimum of  -16.1  with  1  factors

Statistics by number of factors 
  vss1 vss2   map dof   chisq prob sqresid  fit RMSEA BIC SABIC complex  eChisq
1 0.72 0.00 0.042   9 1.1e+01 0.26     2.7 0.72 0.023 -45   -16     1.0 9.6e+00
2 0.46 0.75 0.124   4 9.0e-01 0.92     2.4 0.75 0.000 -24   -11     1.6 6.8e-01
3 0.46 0.70 0.227   0 7.7e-02   NA     2.0 0.78    NA  NA    NA     1.7 7.1e-02
4 0.37 0.63 0.448  -3 7.0e-12   NA     2.2 0.76    NA  NA    NA     2.2 5.8e-12
5 0.37 0.63 1.000  -5 3.6e-11   NA     2.2 0.77    NA  NA    NA     2.2 2.7e-11
6 0.37 0.63    NA  -6 3.6e-11   NA     2.2 0.77    NA  NA    NA     2.2 2.7e-11
     SRMR eCRMS eBIC
1 2.5e-02 0.033  -46
2 6.7e-03 0.013  -24
3 2.2e-03    NA   NA
4 2.0e-08    NA   NA
5 4.2e-08    NA   NA
6 4.2e-08    NA   NA

Scoring

Where each observation stands on each dimension.

# We're keeping only 1 component now:
mypca <- principal(lifesat_data6[,-1], nfactors = 1, rotate = "none")  

mypca$scores
         PC1
[1,]  1.0525
[2,] -0.2234
[3,]  1.0369
[4,] -0.8464
[5,] -0.2131
[6,] -0.0231
...   ...
...   ...
  • so if the dimension is highly related to items 1, 2, and 3, and person \(i\) scores high on those items, then they will score high on the dimension.

Using Scores (1)

Let’s imagine we did a study where participants:

  1. completed our life satisfaction questionnaire
  2. completed the “balloon analogue risk task”
    • (essentially how far do you pump up a balloon - to measure risk taking behaviour)

RQ: Do people who are more satisfied with life engage with less risk taking?

Data:

head(mystudy)
# A tibble: 6 × 7
     Q1    Q2    Q3    Q4    Q5    Q6  BART
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1     1     1     3     1     2     1    13
2     2     3     5     4     4     2     9
3     5     3     3     5     4     5    10
4     2     2     3     2     3     5    15
5     5     4     6     4     3     4     9
6     3     1     5     2     3     1     9
mod <- lm(BART ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q6, data = mystudy)
summary(mod)

Call:
lm(formula = BART ~ Q1 + Q2 + Q3 + Q4 + Q5 + Q6, data = mystudy)

Residuals:
   Min     1Q Median     3Q    Max 
-5.899 -1.851 -0.037  1.557  7.988 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept) 12.69081    1.57212    8.07  1.6e-11 ***
Q1          -0.11956    0.26830   -0.45     0.66    
Q2          -0.03193    0.31441   -0.10     0.92    
Q3           0.00721    0.37090    0.02     0.98    
Q4          -0.22601    0.31598   -0.72     0.48    
Q5          -0.34299    0.38346   -0.89     0.37    
Q6           0.17688    0.21444    0.82     0.41    
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.92 on 68 degrees of freedom
Multiple R-squared:  0.0797,    Adjusted R-squared:  -0.00155 
F-statistic: 0.981 on 6 and 68 DF,  p-value: 0.445

Using Scores (2)

Let’s imagine we did a study where participants:

  1. completed our life satisfaction questionnaire
  2. completed the “balloon analogue risk task”
    • (essentially how far do you pump up a balloon - to measure risk taking behaviour)

RQ: Do people who are more satisfied with life engage with less risk taking?

Data:

head(mystudy)
# A tibble: 6 × 7
     Q1    Q2    Q3    Q4    Q5    Q6  BART
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1     1     1     3     1     2     1    13
2     2     3     5     4     4     2     9
3     5     3     3     5     4     5    10
4     2     2     3     2     3     5    15
5     5     4     6     4     3     4     9
6     3     1     5     2     3     1     9
library(car)
vif(mod)
  Q1   Q2   Q3   Q4   Q5   Q6 
1.81 1.71 1.53 1.93 1.87 1.08 

Using Scores (3)

Let’s imagine we did a study where participants:

  1. completed our life satisfaction questionnaire
  2. completed the “balloon analogue risk task”
    • (essentially how far do you pump up a balloon - to measure risk taking behaviour)

RQ: Do people who are more satisfied with life engage with less risk taking?

Data:

head(mystudy)
# A tibble: 6 × 8
     Q1    Q2    Q3    Q4    Q5    Q6  BART     PC1
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>   <dbl>
1     1     1     3     1     2     1    13 -2.29  
2     2     3     5     4     4     2     9 -0.335 
3     5     3     3     5     4     5    10  0.0432
4     2     2     3     2     3     5    15 -1.35  
5     5     4     6     4     3     4     9  0.375 
6     3     1     5     2     3     1     9 -1.19  
mypca <- principal(mystudy[,1:6], nfactors = 1, rotate = "none")
mystudy$PC1 = mypca$scores[,1]

mod <- lm(BART ~ PC1, data = mystudy)
summary(mod)

Call:
lm(formula = BART ~ PC1, data = mystudy)

Residuals:
   Min     1Q Median     3Q    Max 
-6.135 -1.854 -0.058  1.597  7.297 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)   10.547      0.329   32.10   <2e-16 ***
PC1           -0.714      0.331   -2.16    0.034 *  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.85 on 73 degrees of freedom
Multiple R-squared:  0.06,  Adjusted R-squared:  0.0471 
F-statistic: 4.66 on 1 and 73 DF,  p-value: 0.0342

Using Scale Scores

Let’s imagine we did a study where participants:

  1. completed our life satisfaction questionnaire
  2. completed the “balloon analogue risk task”
    • (essentially how far do you pump up a balloon - to measure risk taking behaviour)

RQ: Do people who are more satisfied with life engage with less risk taking?

Data:

head(mystudy)
# A tibble: 6 × 8
     Q1    Q2    Q3    Q4    Q5    Q6  BART SScore
  <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>  <dbl>
1     1     1     3     1     2     1    13      9
2     2     3     5     4     4     2     9     20
3     5     3     3     5     4     5    10     25
4     2     2     3     2     3     5    15     17
5     5     4     6     4     3     4     9     26
6     3     1     5     2     3     1     9     15
mystudy$SScore <- rowSums(mystudy[,1:6])

mod <- lm(BART ~ SScore, data = mystudy)
summary(mod)

Call:
lm(formula = BART ~ SScore, data = mystudy)

Residuals:
   Min     1Q Median     3Q    Max 
-6.164 -1.859 -0.164  1.532  7.053 

Coefficients:
            Estimate Std. Error t value Pr(>|t|)    
(Intercept)  13.0964     1.3748    9.53  1.9e-14 ***
SScore       -0.1086     0.0568   -1.91     0.06 .  
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Residual standard error: 2.86 on 73 degrees of freedom
Multiple R-squared:  0.0476,    Adjusted R-squared:  0.0346 
F-statistic: 3.65 on 1 and 73 DF,  p-value: 0.06

This week

Tasks

Complete readings


Attend your lab and work together on the exercises


Complete the weekly quiz

Support

Piazza forum!


Office hours (see Learn page for details)