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PATTERN MATRIX



Each row is an item 
(one of our variables)

A squared loading reflects the proportion of 
variance in an item that is uniquely explained by 
a factor.  
e.g., -0.59² = 0.35
35% of the variance in item 1 is explained by Factor 2

Each column is a 
factor
(these are named 
according to the 
extraction method) Loadings show the association between each 

item and each factor. 

With an oblique rotation, the pattern matrix shows 
standardised regression coefficients:
itemi = loadingF1,i*Factor1 + loadingF2,i*Factor2 + … + uniquenessi

With no rotation or an orthogonal rotation these are 
correlation coefficients, and the pattern matrix is identical to 
the structure matrix*

*When an oblique rotation is used, factors can be correlated. Therefore to get the unique association between item 
and factors, we need the regression weights from a model of item ~ factor1 + factor2. 
If the factors are not correlated (by definition they are uncorrelated when no rotation or an orthogonal rotation is 
used), then these regression weights are just the same as the correlations cor(item, factor1) and 
cor(item, factor2). 

PATTERN MATRIX



Square the correlations each item and add 
them up, and you get the proportion of 
variance in an item that is explained by all 
the factors. This is the “communality”.  

The correlations are in the structure matrix, 
but this is the pattern matrix. Because the 
factor correlations here are low, we can just 
do this calculation on the loadings here
e.g., -0.11² + 0.61² = approx 0.37
37% of the variance in item 4 is explained by this 2 
Factor solution

COMMUNALITIES



The proportion of variance in each item 
that is left unexplained by the factors is 1 
minus the communality. 
e.g., 1 - 0.37 = 0.63
63% of the variance in item 4 is left unexplained

UNIQUENESS



The extent to which a given item loads on 
to a single factor vs onto multiple factors is 
termed ‘complexity’. 
It equals 1 if an item loads only on one 
factor, 2 if it loads evenly on 2 factors, and 
so on. 

COMPLEXITY



Square all the loadings for each factor and add 
them up. This gives you the “SS loadings”. 

These are the same as the eigenvalues unless 
an oblique rotation is used. As the variance in 
each item is scaled to be 1, the total variance in 
the data is equal to the number of items. 

SS Loadings & “Variance Accounted For”



SS loadings divided by number of items gives 
the proportion of variance in the data 
explained by each factor
e.g., 2.45/9 = 0.27
27% of the variance is explained by Factor 1

SS Loadings & “Variance Accounted For”



Taking each factor sequentially, we can 
calculate the cumulative variance 
explained. 
e.g., 0.27+0.22 = 0.49

SS Loadings & “Variance Accounted For”



Out of the total variance explained by all 
factors, we can calculate the proportion 
of this that is explained by each factor. 
e.g., 0.27/0.49 = 0.55

We can see this cumulatively too

SS Loadings & “Variance Accounted For”



Correlation matrix for the factors. This will 
depend on whether or not a correlation is 
estimated (i.e. whether an oblique rotation 
is used). Shows how related the factors are 
to one another. 

FACTOR CORRELATIONS



Mean of the item 
complexities column

OPTIONAL EXTRA: GOODNESS OF FIT TEST

the “null model” is a 
model that assumes no 
correlation structure.
df = p * (p-1)/2
p = number of items

our model
df = p * (p-1)/2 - p * nF + nF*(nF-1)/2
p = number of items
nF = number of factors

average number of non-
missing observations for 
each pair of items

Total number of 
observations in the data

Chi-square ‘goodness of fit’ for our model (calculated two ways, see 
?factor.stats ). 
The set of parameters from our model implies a correlation matrix, and we have 
our observed matrix. The discrepancy between these is the residual correlation 
matrix, and it is on this that the Chi-Square statistic is based (think “observed 
minus expected”). 

Lower Chi-Square values are better. A significant Chi-square value 
indicates possible under-extraction of factors.



OPTIONAL EXTRA: FIT INDICES
All of these are essentially measure of how well (or how badly) the model fits to the observed data. They are more conventionally used in confirmatory factor 
analysis (CFA) and structural equation modelling (SEM), but are printed here too. 

- We want RMSR to be low (it indicates the average size of the residual correlation)
- Tucker Lewis Index (TLI) compares the chi-square of our model to that of the null model (adjusted for the df). 

It ranges 0 to 1, and we want it to be high. Typical cut-offs used to indicate good fit are >0.9 or >0.95.
- RMSEA is a measure of how far our model is from a ‘perfect model’. 

Lower is better, and typical cut-offs used to indicate good fit are <0.05, <0.08 or <0.1.
- BIC is only relevant for comparing models



OPTIONAL EXTRA: INDETERMINACY INDICES

“Factor score indeterminacy”: there are an infinite number of pairs of factor loadings and factor score matrices which will fit the data equally 
well, and are thus indistinguishable by any numeric criteria, so there are infinite number of sets of factor scores that are consistent with a given 
set of loadings.

Multiple R square of scores with factors
“The multiple R2 between the factors and factor score estimates, if they were to be found." (Grice, 2001). This is a little bit like the R2 for a regression model of the 
items predicting the estimated factor score. If we could perfectly predict factor scores from items, then it would be 1. 

Correlation of (regression) scores with factors
This just the square root of the multiple R2.

Minimum correlation of possible factor scores
This is 2 x R2 – 1, so essentially the R2 but transformed to be between -1 and 1.  



set.seed(533)
makeitems <- function(){

S = runif(5,.4,2)
f = runif(5,.4,.99)
R = f %*% t(f)
diag(R) = 1
items = round(MASS::mvrnorm(400, mu = rnorm(5,3,.6), Sigma=diag(S)%*%R%*%diag(S)))
apply(items, 2, function(x) pmin(7,pmax(1,x)))

}
eg_data = do.call(cbind,lapply(1:2, function(x) makeitems()))
eg_data[,5] <- round(rowMeans(eg_data[,c(5,10)]))
eg_data <- eg_data[,-10]
eg_data[,1] <- max(eg_data[,1]) - eg_data[,1] + 1
eg_data[,6] <- max(eg_data[,6]) - eg_data[,6] + 1
eg_data <- as.data.frame(eg_data)
names(eg_data) <- paste0("item_",1:9)

mm = fa(eg_data, nfactors=2, rotate = "oblimin", fm="ml")
mm

# tli
((1138.13/36) - (20.71/19)) / 

((1138.13/36) - 1)

# rmsea
sqrt(20.71 - 19) / 

sqrt(19*(400-1))


