
Dapr1: Notes on the live R session, Week 4

This week’s topic is “describing relationships”. We will start by loading “tidyverse”
library(tidyverse)

We will also need to use another package called “ggmosaic”. You may or may not have this package installed.
You can check whether you have it installed if you select the “Packages” tab in the bottom right panel of R
studio. If “ggmosaic” is listed, then you have it installed. If it is not installed, you need to install it, which
you can do by clicking the “Install” tab on that panel, and typing “ggmosaic” in the “Packages” box. Once it
is installed, you need to load it into your R studio session, like this:
library(ggmosaic)

Now we will load the dataset. This is the “ex1” dataset. It is the same as the one we have been using in
weeks 1-3:
ex1 <- read_csv("https://uoepsy.github.io/data/ex1.csv")

Categorical-Categorical relationships

Let’s start by making a contingency table of “Degree” by “Year”. This will show the number of students in
each year of study, for each subject:
ex1 |>

select(Degree, Year) |>
table()

Year
Degree 1 2 3 4
Joint 3 2 3 2
Ling 17 42 17 6
Phil 6 10 9 1
Psych 7 17 7 1

In the code, we pipe the “ex1” dataset to the “select” command, which outputs the “Degree” and “Year”
columns. Another pipe is then used to input these two columns to the “table()” command, which makes
the 2-dimensional contingency table. Note that we type “select(Degree,Year)”. We could also have reached
the same result with the following code, which explicitly states that the dataset is “ex1”, within the “select”
command. In this case, we don’t use the pipe at the start of the command.
select(ex1,Degree,Year) |> table()

Year
Degree 1 2 3 4
Joint 3 2 3 2
Ling 17 42 17 6
Phil 6 10 9 1
Psych 7 17 7 1

If we reverse the order of “Degree” and “Year”, we will get the same result, but with each “Degree” as a
column, and each “Year” as a row:

1

ex1 |>
select(Year, Degree) |>
table()

Degree
Year Joint Ling Phil Psych
1 3 17 6 7
2 2 42 10 17
3 3 17 9 7
4 2 6 1 1

Mosaic plots

We can display the same information using a mosaic plot, with the following command. This uses
“geom_mosaic()”, which requires the “ggmosaic” package to be loaded. If you don’t have the ggmosaic
package, you will need to install it first. The following code assumes that the ggmosaic package is installed,
and the first command loads the package into the current session.
library(ggmosaic)

ggplot(data=ex1) +
geom_mosaic(aes(x = product(Degree, Year), fill=Degree)) +
labs(x = "\n Year")

Joint

Ling

Phil

Psych

1 2 3 4

 Year

D
eg

re
e

Degree

Joint

Ling

Phil

Psych

Notice that we specify that we want to plot “Degree” and “Year” using the expression “product(Degree,
Year)”. Notice also that “fill=Degree” means that we are asking R to use a different colour for each degree,
and we allow R to use its own defaults. We can change the colours by adding “scale_fill_manual()”, and
specifying a list of four colours to go with the four degrees:

ggplot(data = ex1) +
geom_mosaic(aes(x = product(Degree, Year), fill=Degree)) +
labs(x = "\n Year") +
scale_fill_manual(values=c("darkred","darkgreen","darkblue","darkorange"))

2

Joint

Ling

Phil

Psych

1 2 3 4

 Year

D
eg

re
e

Degree

Joint

Ling

Phil

Psych

Grouped histograms

We may want to visualise the frequency distributions of the scores for each degree. In this case, we can use
grouped histograms. This can be done with the following code, which is very similar to the histogram code
that we have seen before:

ggplot(data=ex1, aes(x=Score1)) +
geom_histogram(bins = 15,

color = "white",
fill = "steelblue4") +

facet_wrap(~Degree)

Phil Psych

Joint Ling

60 65 70 75 60 65 70 75

0

5

10

15

0

5

10

15

Score1

co
un

t

3

The part of the code that deals with plotting separate histograms is “facet_wrap(~Degree)”, which tells R to
plot a separate histogram for each degree. Notice the use of the tilde character “~” in “~Degree”.

If we want a different fill color for each degree, we need to use “aes(fill=Degree)” inside the “geom_histogram()”
command. This will tell R to choose colours based on the degree:

ggplot(data=ex1, aes(x=Score1)) +
geom_histogram(bins = 15,

color = "white",
aes(fill=Degree)) +

facet_wrap(~Degree)

Phil Psych

Joint Ling

60 65 70 75 60 65 70 75

0

5

10

15

0

5

10

15

Score1

co
un

t

Degree

Joint

Ling

Phil

Psych

And, if we want to choose our own colours, again, we need to add “scale_fill_manual()”, like this:
ggplot(data = ex1, aes(x=Score1)) +
geom_histogram(bins = 15,

color = "white",
aes(fill=Degree)) +

facet_wrap(~Degree) +
scale_fill_manual(values=c("darkgreen","darkred","violet","steelblue3"))

4

Phil Psych

Joint Ling

60 65 70 75 60 65 70 75

0

5

10

15

0

5

10

15

Score1

co
un

t

Degree

Joint

Ling

Phil

Psych

We can also change how the histogram is arranged. For example, we can change the number of rows or
columns using “nrow” or “ncol” in the “facet_wrap()” command. For example, in the following, we use
“nrow=1”, so there will only be one row.

ggplot(data=ex1, aes(x=Score1)) +
geom_histogram(bins = 15,

color = "white",
aes(fill=Degree)) +

facet_wrap(~Degree, nrow=1) +
scale_fill_manual(values=c("darkgreen","darkred","violet","steelblue3"))

Joint Ling Phil Psych

60 65 70 75 60 65 70 75 60 65 70 75 60 65 70 75

0

5

10

15

Score1

co
un

t

Degree

Joint

Ling

Phil

Psych

An alternative way to do grouped histograms is to create each histogram separately, saving each one with a
separate name, and then arrange them using the patchwork package. You will learn this in the labs.

5

Continuous - Continuous relationships and Covariance

The covariance between two variables “x” and “y” describes how “x” and “y” vary together.

Recall the formula for covariance:

Covxy =
∑n

i=1 (xi − x̄)(yi − ȳ)
n − 1

To give a very intuitive idea of how the covariance formula captures a relationship, we will use a simplified
(and unrealistic) example. We define “x” to be a list containing integers 2 to 8, and “y” to be a list containing
integers 12 to 18
x <- c(2,3,4,5,6,7,8)
y <- c(12,13,14,15,16,17,18)

(by the way, we could also have done this with the following simpler code):
x <- 2:8
y <- 12:18

Before we start, we will be able to see that the relationship between “x” and “y” is positive: “x” goes up
when “y” goes up, and “x” goes down when “y” goes down. We can confirm this by doing a quick and easy
scatter plot, which shows dots following a perfectly linear positive slope:
plot(x,y)

2 3 4 5 6 7 8

12
13

14
15

16
17

18

x

y

A positive relationship between “x” and “y” will correspond to a positive value for covariance.

As a first step in explaining the covariance formula, let’s take each item in the list “x” and subtract the mean
of “x”. And also, let’s take each item in the list “y” and subtract the mean of “y”
x-mean(x)

[1] -3 -2 -1 0 1 2 3

y-mean(y)

[1] -3 -2 -1 0 1 2 3

For both lists, this results in a negative value for items on the list that are below the mean. For example, in
list “x”, the first item on the list is 2, and as the mean of the list is 5, the subtraction results in 2 − 5 = −3.

6

The result is positive for items that are higher than the mean (e.g. 8 − 5 = 3), and the result is zero for the
item that is the same as the mean. Now, let’s multiply these two sets of differences together:
(x-mean(x)) * (y-mean(y))

[1] 9 4 1 0 1 4 9

The multiplication results in positive numbers (and one zero). All differences that came out as negative for
list “x” correspond to items that were also negative for list “y”. All differences that were positive for “x” were
also positive for “y”. In both cases, multiplying the relevant values together results in a positive number.
Therefore, if we sum these products together, we will get a positive number:
sum((x-mean(x)) * (y-mean(y)))

[1] 28

To calculate covariance, we divide this sum by n − 1, and this will also result in a positive number:
sum((x-mean(x)) * (y-mean(y)))/(length(x)-1)

[1] 4.666667

This positive covariance reflects the fact that the relationship between x and y is positive: the positions on
list “x” that have higher values (relative to the mean of “x”) tend to correspond to positions on list “y” that
also have higher values (relative to the mean of “y”).

How about if we have a negative relationship? Let’s say that we keep the “x” list, define a new list “y2”.
This time, the higher numbers in “x” correspond to lower numbers in “y”:
x <- c(2,3,4,5,6,7,8)
y2 <- c(18,17,16,15,14,13,12)

We can get a visual impression of the negative relationship with a plot, and we see that the dots follow a
perfectly linear negative slope:
plot(x,y2)

2 3 4 5 6 7 8

12
13

14
15

16
17

18

x

y2

Now, what happens if we work out the differences between each value and its mean, for “x” and “y2”?
x-mean(x)

[1] -3 -2 -1 0 1 2 3

7

y2-mean(y2)

[1] 3 2 1 0 -1 -2 -3

Here, the negative differences for list “x” correspond to positive differences for list “y”, and vice versa.
Multiplying each pair of (positive and negative) values together will result in a negative product.
(x-mean(x))*(y2-mean(y2))

[1] -9 -4 -1 0 -1 -4 -9

Finally, if we take the sum of all these differences, we will end up with a negative value, and that means that
the variance (after dividing by “n-1”) will also be negative:
sum((x-mean(x))*(y2-mean(y2)))/(length(x)-1)

[1] -4.666667

As usual, there is an easier way to do it. We could have done the covariance calculations with the command
“cov()”:
cov(x,y)

[1] 4.666667

cov(x,y2)

[1] -4.666667

We can also see that covariance depends on the scale. Let’s say “x” represents measurements in metres, but
now we want to represent it as measurements in centimetres, so we need to multiply each value of “x” by 100.
If we calculate the covariance between this and the original version of “y”, the result will now be different
from the previous calculation:
cov(x*100,y)

[1] 466.6667

Later in the course, you will learn how to standardize covariance, so that it is not sensitive to measurement
scale. The standardized covariance is known as the correlation coefficient. The correlation coefficient always
has a value between -1 and 1, regardless of the measurement scale of the variables. A value of -1 for the
coefficeint indicates a perfect negative correlation, and a value of 1 indicates a perfect positive correlation.

A slightly more realistic example

Of course, in real life, the relationships between variables are not as neat as the simplistic example above.
Let’s have a look at the relationship between “Score1” and “Score2” in the ex1 dataset.

First, we can plot the relationship. In this case, rather than using “plot()”, we will use “gglot()” and
“geom_point()”, giving more options for how the plot will be displayed:

ggplot(data=ex1, aes(x=Score1, y=Score2)) +
geom_point(colour = "steelblue4") +
labs(x = "\n Pre Test Score",

y = "Post Test Score \n")

8

64

68

72

76

60 65 70

 Pre Test Score

P
os

t T
es

t S
co

re

Here, we can see what looks like a positive relationship: the general pattern is for the dots to follow a positive
slope, from the bottom left to the top right of the plot, although the pattern is not as neat as the simple case
that we looked at above. Before going on to work out the covariance, we could have a look at some of the
display options. For example, we can change the size of the points (using “size”), and also the shape (using
“shape”):

ggplot(data=ex1, aes(x=Score1, y=Score2)) +
geom_point(colour = "steelblue4", size=3, shape="diamond") +
labs(x = "\n Pre Test Score",

y = "Post Test Score \n")

64

68

72

76

60 65 70

 Pre Test Score

P
os

t T
es

t S
co

re

Now, let’s calculate the covariance. Using “summarise()” and the pipe, we could explicitly code the formula
like this:

9

ex1 |> summarise(Covariance =
round(sum((Score1-mean(Score1))*(Score2-mean(Score2)))/

(length(Score1)-1),digits=2))

A tibble: 1 x 1
Covariance
<dbl>
1 3.36

We can confirm that the result is the same as using “cov()”:
ex1 |> summarise(Covariance =

round(cov(Score1,Score2),digits=2))

A tibble: 1 x 1
Covariance
<dbl>
1 3.36

The covariance is positive, as visualised on the plot.

10

	Categorical-Categorical relationships
	Mosaic plots
	Grouped histograms
	Continuous - Continuous relationships and Covariance
	A slightly more realistic example

