
Week 11: Sampling Live R

In the lecture this week, we covered Samples and Sampling Distributions. Today, we’ll explore these ideas
further. Specifically, we’ll examine random samples from a large dataset, and use a new function to explore
variability within these samples, given a specific n and sample number.

First, let’s load the tidyverse.

library(tidyverse)

Let’s say that we are interested in the sleeping habits of all students within the University of Edinburgh.
To investigate this, let’s first create a dataset that represents our population of interest. The variable we’ll
examine is average hours of sleep per night. We’ll assume that hours of sleep is normally distributed, so
we’ll use the rnorm function to generate sample data.

set.seed(1022)
dat <- tibble(mSleep = rnorm(28755, mean = 7.53, sd = 1.5),

Year=sample(c('Y1', 'Y2', 'Y3', 'Y4'), size = 28755, replace = T))

Now, let’s visualise the data using a histogram:

ggplot(dat, aes(mSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3') +
geom_vline(xintercept = mean(dat$mSleep), colour = 'red') +
labs(x = 'Sleep (hrs)', y = 'Count')
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We can see here that the data are normally distributed, which is as expected since we used the rnorm
function to generate them, and rnorm produces data that follow a normal distribution with a given mean
and standard deviation.

Since everything appears to be in order with our population, let’s take some samples and see how well they
represent our population. To do this, we’ll use a new function, rep_sample_n.

source('https://uoepsy.github.io/files/rep_sample_n.R')

What happens when you run this line of code? You’ll notice that the function appears as an object in your
environment. You can now use it as you would any other function. If you try to run the function before
sourcing it (or if you’ve removed it from your environment), you will get an error. You will need to source
the function every time you open RStudio (in the same way you need to load packages from the library each
time you open RStudio).

rep_sample_n is a function that selects samples from a dataset. Unlike the sample function, however, it
allows you to specify how many samples you would like to produce. It requires three arguments:

rep_sample_n(data, n = <sample size>, samples = <how many samples>)

Let’s take two samples of 5 participants each from our data:

rep_sample_n(dat, 5, 2)

## # A tibble: 10 x 3
## sample mSleep Year
## <dbl> <dbl> <chr>
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## 1 1 7.84 Y3
## 2 1 8.03 Y4
## 3 1 5.64 Y3
## 4 1 7.07 Y4
## 5 1 8.65 Y4
## 6 2 6.65 Y2
## 7 2 9.07 Y3
## 8 2 7.45 Y2
## 9 2 7.58 Y4
## 10 2 7.37 Y4

rep_sample_n takes the above arguments, and outputs a tibble with the sample number in one column and
the sample values in other columns. In our example, the output has ten rows (2 samples X 5 participants
each) and three columns. The column sample gives us the sample number, the column mSleep gives us each
participant’s average hours of sleep, and the column Year gives us each participant’s year of study.

How does sample number affect the sampling distribution?

Let’s start with a single sample of 10 participants.

rep_sample_n(dat, 10, 1) |>
summarise(meanSleep = mean(mSleep)) |>
ggplot(aes(meanSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3') +
scale_x_continuous(limits = c(0, 15)) +
geom_vline(xintercept = mean(dat$mSleep), colour = 'red')
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What happens to the distribution if we increase the number of samples? Note that we’ll have to add the
group_by function to the code to get this to work properly. The group_by function allows us to specify a
column within our data by which we’d like to group rows. In this case, we want to specify that each sample
is an individual group, and summarise the data by group rather than across the dataset as a whole. In this
way, a mean will be computed separately for each sample.

rep_sample_n(dat, 10, 5) |>
group_by(sample) |>
summarise(meanSleep = mean(mSleep)) |>
ggplot(aes(meanSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3') +
scale_x_continuous(limits=c(0, 15)) +
geom_vline(xintercept = mean(dat$mSleep), colour = 'red')
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How does sample size affect the sampling distribution?

Let’s start with 10 samples of only 1 participant.

rep_sample_n(dat, 1, 10) |>
group_by(sample) |>
summarise(meanSleep = mean(mSleep)) |>
ggplot(aes(meanSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3') +
scale_x_continuous(limits=c(0, 15)) +
geom_vline(xintercept = mean(dat$mSleep), colour = 'red')
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What happens as we increase our sample size? Let’s increase it to 5.

rep_sample_n(dat, 5, 10) |>
group_by(sample) |>
summarise(meanSleep = mean(mSleep)) |>
ggplot(aes(meanSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3') +
scale_x_continuous(limits=c(0, 15)) +
geom_vline(xintercept = mean(dat$mSleep), colour = 'red')
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Other distributions

Now, let’s imagine that somehow, sleep is actually uniformly distributed, so that people are equally likely
to be sleeping 1 hour on average or 15 hours on average.

sleepUni <- tibble(mSleep=runif(nrow(dat), min=1, max = 15))

ggplot(sleepUni, aes(mSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3')
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To demonstrate the central limit theorem, let’s draw increasingly larger samples and see what happens to
our sampling distribution.

rep_sample_n(sleepUni, 1, 100) |>
group_by(sample) |>
summarise(meanSleep = mean(mSleep)) |>
ggplot(aes(meanSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3') +
scale_x_continuous(limits=c(0, 15)) +
geom_vline(xintercept = mean(sleepUni$mSleep), colour = 'red')
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rep_sample_n(sleepUni, 5, 100) |>
group_by(sample) |>
summarise(meanSleep = mean(mSleep)) |>
ggplot(aes(meanSleep)) + geom_histogram(colour = 'plum4', fill = 'plum3') +
scale_x_continuous(limits=c(0, 15)) +
geom_vline(xintercept = mean(sleepUni$mSleep), colour = 'red')
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How are our data distributed by year in Uni?

Let’s go back to our normally distributed sleep data and use the grouping variable, Year to visually investigate
any differences in sleep by year in Uni.

tbl_Year <- dat |>
group_by(Year) |>
summarise(n = n(),

xbar = mean(mSleep),
se = sd(mSleep) / sqrt(n)) |>

mutate(xbar = round(xbar, 2),
se = round(se, 2))

tbl_Year

## # A tibble: 4 x 4
## Year n xbar se
## <chr> <int> <dbl> <dbl>
## 1 Y1 7187 7.54 0.02
## 2 Y2 7260 7.52 0.02
## 3 Y3 7085 7.51 0.02
## 4 Y4 7223 7.5 0.02

Here, we’ve created a summary table that has the mean hours of sleep by students in each year in Uni. Let’s
plot this to visualise the means by group, showing each mean along with +/- 2 standard errors:
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ggplot(tbl_Year, aes(x=Year, y=xbar, ymin=xbar-2*se, ymax=xbar+2*se)) + geom_pointrange()

7.50

7.55

Y1 Y2 Y3 Y4
Year

xb
ar

If we look at this plot as is, it looks as though there’s a negative relationship between year in Uni and mean
sleep. However, the y-axis is a bit misleading here. Look at the scaling! It’s quite small.
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Let’s adjust the scaling on the y-axis using scale_y_continuous:

ggplot(tbl_Year, aes(x=Year, y=xbar, ymin=xbar-2*se, ymax=xbar+2*se)) + geom_pointrange() +
scale_y_continuous(limits=c(7, 8), breaks = seq(7, 8, .25))
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By adjusting the scale, we can see that there’s really not much difference between our groups in the overall
population.
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