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Exploratory Data
Analysis

Research design and data
Describing categorical data
Describing continuous
data
Describing relationships
Functions

Probability

Probability theory
Probability rules
Random variables
(discrete)
Random variables
(continuous)
Sampling

Foundations of
inference

Confidence intervals
Hypothesis testing (p-values)
Hypothesis testing (critical
values)

Course Overview

Hypothesis testing and
confidence intervals
Errors, power, effect size,
assumptions

Common
hypothesis tests

One sample t-test
Independent samples t-test
Paired samples t-test
Chi-square tests
Correlation
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Learning objectives
1. Understand the parallel between p-values and critical values

2. Be able to perform a one-sided or two-sided hypothesis test using the critical value method

3. Understand the link between t-scores and critical values
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Part A

Introduction
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Setting
We cannot afford to collect data for the full population

Data are only collected on one random sample of  individuals, where  = sample size

After we have selected a sample at random, we know the measurements of the individuals in the sample.

We are not interested in the individuals in the sample per se, but we collected data on them to infer from the sample data
some property of the wider population the sample came from.

You may want to:

Goal A: Estimation. Estimate a population parameter.
Goal B: Hypothesis Testing. Test whether a hypothesised parameter value is plausible.

n n
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for a 95% CI, the values  and  are found as:

qt(c(0.025, 0.975), df = n - 1)

for a 90% CI, the values  and  are found as:

qt(c(0.05, 0.95), df = n - 1)

A. Estimation
If our goal is estimating a population mean, 

we use the average of the observations in the sample, , as the estimate

the precision of our estimate is measured by the standard error, telling the average distance of a sample mean from the
population mean

a 95% (or 90% or 99%) confidence interval gives us a range of plausible values for the population mean. This is:

μ

x̄

[x̄ − t∗ ⋅ ,   x̄ + t∗ ⋅ ]s

√n

s

√n

−t∗ +t∗ −t∗ +t∗
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B. Testing
If our goal is testing a hypothesis, for example:

Compute a test statistic, measuring some sort of "distance" between the sample data and the null hypothesis.

Definition: Test Statistic
A test statistic is any numerical quantity computed from the sample data with the purpose to make a test of some
kind.

For testing a population mean, we use the t-statistic:

The t-statistic is the difference between the sample and hypothesised mean, divided by the variation in sample means due to
random sampling.

When you will perform a test on categorical variables you will see a different type of test statistic (the chi-squared statistic).

H0 : μ = μ0 vs H1 : μ ≠ μ0

t = where  SE =
x̄ − μ0

SE

s

√n
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Part B

P-values and Critical Values
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Suppose I gave you a population with a mean :

(21, 21, 18, 23, 21, 25, 16, 19, 17, 19, 21, 23, 19, 18, 19, 21,
20, 23, 19, 17)

Take all possible samples of size .

For each sample:

Compute the average of the  numbers in the
sample.

Plot all the averages 's using a histogram.

Centre?
Spread?

The sample mean  fluctuates from sample to sample
around the population mean , and the typical
distance from the true value is given by the SE.

Thought experiment

μ = 20

n = 4

n = 4

x̄

x̄
μ = 20
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Testing hypotheses
Suppose we are testing

We can build a test statistic to assess how much the sample data are consistent with the specified null hypothesis.

The test statistic for testing a mean is the t-statistic or t-score. In the example above, :

We can compute the t-statistic for the observed sample. But is this a surprising value or not?

To decide this we need to ask ourselves: What are all the possible values of the t-statistic when  is true?

I.e., what is the distribution of the t-statistic when  is true? More formally, what is the null distribution?

H0 : μ = 20

H1 : μ ≠ 20

μ0 = 20

t =
x̄ − 20

s/√n

H0

H0
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Suppose I gave you a population with a mean :

(21, 21, 18, 23, 21, 25, 16, 19, 17, 19, 21, 23, 19, 18, 19, 21,
20, 23, 19, 17)

Take all possible samples of size .

For each sample:

Compute the average  of the  numbers in
the sample.
Compute the SD  of the  numbers in the
sample.
Compute the t-statistic  for that sample.

Histogram of all t-statistics shows a distribution with
more variability than a standard normal:

Thought experiment: Null distribution

μ = 20

n = 4

x̄ n = 4

s n = 4

t = x̄−20

s/√n

t(n − 1)
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Null distribution
This thought-experiment shows us that the t-statistic, when the null hypothesis is true, follows a  distribution.

Why only when  is true? Recall the previous example, in which the null hypothesis that  was true.

If that is the case, the sample means will fluctuate around 20. In turn, the distances of the sample means from 20, i.e. the t-
scores, will fluctuate around 0.

The null distribution shows us all the possible distances (t-statistics) between a sample mean and the hypothesised mean,
when  is true.

If our observed sample gives us a t-statistic that is unlikely / surprising when  is true, we start doubting the null hypothesis!

t(n − 1)

t = ∼ t(n − 1)
x̄ − μ0

s/√n

H0 H0 : μ = 20

H0

H0
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Suppose you have collected data on one sample, with
sample size . The sample data are:

We wish to test whether this sample comes from a
population with a mean different from 20:

data_sample <- tibble(x = c(32, 36, 26, 28))
data_sample

## # A tibble: 4 × 1
##       x
##   <dbl>
## 1    32
## 2    36
## 3    26
## 4    28

xbar <- mean(data_sample$x)
xbar

## [1] 30.5

n <- nrow(data_sample)
s <- sd(data_sample$x)
se <- s / sqrt(n)

mu0 <- 20
tobs <- (xbar - mu0) / se
tobs

## [1] 4.735

Example

n = 4

(32, 36, 26, 28)

H0 : μ = 20 vs H1 : μ ≠ 20
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We choose a significance level,  say.

As  is two-sided, we compute the p-value as:

# Twice the area to the right of observed t
pvalue <- 2 * pt(abs(tobs), df = n-1, 
                 lower.tail = FALSE)
pvalue

## [1] 0.01785

This is the probability of observing a t-statistic having at
least the same distance from 0 as the observed t-
statistic, when  is true.

An observed mean of 30 is as distant from 20 as 10 is. So
both would be equally "different" from the
hypothesised value, 20.

P-value: Computation

α = 0.05

H1

H0
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To make a decision on whether or not to reject  we
need to compare the computed p-value with the chosen
significance level of 5%.

The p-value is 0.018, which is less than the chosen
significance level, so we reject the null hypothesis.

In doing so, we compared the blue area, corresponding
to the p-value, against the red area, corresponding to
the  significance level.

Recall that the  probability is equally divided
among the two tails in this case, because the alternative
hypothesis is two-sided.

P-value: Making a decision

H0

α = 0.05

α = 0.05
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Rather than comparing the area of  (0.05, in red) to the
area of the p-value (0.018, in blue), we can compare the
corresponding t-statistics along the x-axis.

The p-value is computed using the observed t-statistic,
 = 4.74.

The t values that cut an area of 0.025 to the left and
0.025 to the right are called the critical values for

, denoted  and :

qt(c(0.025, 0.975), df = n-1)

## [1] -3.182  3.182

We reject  when either  or .

Equivalent approach: Critical values

α

tobs

α = 0.05 −t∗ +t∗

H0 tobs ≤ −t∗ tobs ≥ +t∗
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Example 2
Suppose now that the collected sample, with sample size , was:

We wish to test whether this sample comes from a population with a mean different from 20:

data_sample2 <- tibble(x = c(18, 21, 19, 23))
data_sample2

## # A tibble: 4 × 1
##       x
##   <dbl>
## 1    18
## 2    21
## 3    19
## 4    23

n = 4

(18, 21, 19, 23)

H0 : μ = 20

H1 : μ ≠ 20
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Example 2
xbar <- mean(data_sample2$x)
xbar

## [1] 20.25

n <- nrow(data_sample2)
s <- sd(data_sample2$x)
se <- s / sqrt(n)

mu0 <- 20
tobs <- (xbar - mu0) / se
tobs

## [1] 0.2255
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Critical values for a  distribution with 

tstar <- qt(c(0.025, 0.975), df = n-1)
tstar

## [1] -3.182  3.182

Is the observed  0.23 smaller than or equal to the
lower critical value? No!
Is the observed  0.23 greater than or equal to the
upper critical value? No!

tobs <= tstar[1]

## [1] FALSE

tobs >= tstar[2]

## [1] FALSE

Example 2

t(n − 1) α = 0.05

tobs =

tobs =
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Example 2
As our observed t-statistic lies in between the two critical values, rather than beyond, it lies in the middle 95% of the null
distribution.

If you were to compute the p-value for , it would be larger than , which is the area beyond the critical values .

We do not have sufficient evidence to reject  at the 5% significance level.

t α ±t∗

H0
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Part C

Body temperature example
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Body temperature example
Has the average body temperature for healthy humans changed from the long-thought 37 °C?

We are testing:

Read the data:

library(tidyverse)
tempsample <- read_csv('https://uoepsy.github.io/data/BodyTemperatures.csv')
tempsample <- tempsample |> 
    drop_na(BodyTemp)
glimpse(tempsample)

## Rows: 50
## Columns: 2
## $ BodyTemp <dbl> 36.44, 37.44, 37.22, 37.11, 36.67, 37.17, 37.22, 36.56, 36.00…
## $ Pulse    <dbl> 69, 77, 75, 84, 71, 76, 81, 77, 75, 81, NA, 78, 71, 80, 70, 7…

H0 : μ = 37 vs H1 : μ ≠ 37
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Body temperature example
xbar <- mean(tempsample$BodyTemp)
xbar

## [1] 36.81

The observed t-statistic: 

n <- nrow(tempsample)
n

## [1] 50

s <- sd(tempsample$BodyTemp)
SE <- s / sqrt(n)

mu0 <- 37
tobs <- (xbar - mu0) / SE
tobs

## [1] -3.141

t =
x̄−μ0

s/√n
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Body temperature example
The observed t-statistic is  = -3.14.

Compute the critical values of a t(49) distribution with :

qt(c(0.025, 0.975), df = n - 1)

## [1] -2.01  2.01

The observed t-statistic lies beyond the critical values, and as such falls in the 5% probability tails of the null distribution.

We reject the null hypothesis as the observed t-statistic is unlikely to be obtained if the null hypothesis were true.

In terms of reporting, when the observed  is beyond the critical values, . Otherwise, .

At the 5% significance level, we performed a two-sided hypothesis test against the null hypothesis that the mean
body temperature for all healthy humans is equal to 37 °C.
As the observed t-statistics lies beyond the critical values, the sample results provide strong evidence against the null
hypothesis and in favour of the alternative one that the average body temperature differs from 37 °C;

, two-sided.

tobs

α = 0.05

t p < α p > α

t(49) = −3.14, p < .05
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, example with H1 : μ < μ0 t(3)
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 = A will lead to a p-value < .05

 = B will lead to a p-value > .05

 = C will lead to a p-value > .05

, example with H1 : μ < μ0 t(3)

tobs

tobs

tobs
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, example with H1 : μ > μ0 t(3)
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 = A will lead to a p-value > .05

 = B will lead to a p-value > .05

 = C will lead to a p-value < .05

, example with H1 : μ > μ0 t(3)

tobs

tobs

tobs
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, example with H1 : μ ≠ μ0 t(3)
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 = A will lead to a p-value < .05

 = B will lead to a p-value > .05

 = C will lead to a p-value > .05

 = D will lead to a p-value < .05

, example with H1 : μ ≠ μ0 t(3)

tobs

tobs

tobs

tobs
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Tasks

Attend both lectures

Attend your lab and work together on the lab tasks

Tip: read the worked example in advance!

Complete any lecture activities and/or readings

Complete the weekly quiz

Opens Monday at 9am
Closes Sunday at 5pm

Support

Office hours: for one-to-one support on course
materials or assessments
(see LEARN > Course information > Course contacts)

Piazza: help each other on this peer-to-peer discussion
forum

Student Adviser: for general support while you are at
university
(find your student adviser on MyEd/Euclid)

This week
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