Confidence Intervals

Data Analysis for Psychology in R 1 Semester 2, Week 1

Dr Umberto Noè

Department of Psychology The University of Edinburgh

Learning objectives

- 1. Understand the importance of a confidence interval.
- 2. Understand the link between standard errors and confidence intervals.
- 3. Understand how to construct a confidence interval for an unknown parameter of interest.

Part A

Recap

Normal distribution

- Variable = any characteristic of the units under investigation.
- A variable X follows a Normal distribution with mean μ and standard deviation σ if its distribution is bell-shaped and symmetric.
- Using mathematical symbols, we write that X follows a Normal distribution with mean μ and standard deviation σ as:

 $X \sim N(\mu,\sigma)$

- μ specifies the centre of the distribution
- σ specifies the spread of the distribution

Normal distribution: probability vs quantile

Find the probability p to the LEFT of a value x:

p <- pnorm(x, mean = mu, sd = sigma)</pre>

Find the value x having a probability p to its LEFT:

x <- qnorm(p, mean = mu, sd = sigma)</pre>

Example with N(0, 1):

qnorm(0.975)

[1] 1.96

pnorm(1.96)

Standardisation / z-scoring

- Let $X \sim N(\mu, \sigma)$. In words: Let X follow a normal distribution with mean μ and standard deviation σ .
- Define:

$$Z = \frac{X - \mu}{\sigma}$$

• $Z \sim N(0,1)$. In words: Z follows a standard normal distribution.

 $\circ \ \mu_Z = 0$

- $\circ ~\sigma_Z = 1$
- To transform Z back to X we use this transformation:

$$X = \mu + Z \cdot \sigma$$

Normal 68–95–99.7 rule

• Recall that for a random variable $X \sim N(\mu, \sigma)$, roughly 95% of the values fall between $\mu - 2\sigma$ and $\mu + 2\sigma$:

Normal 68–95–99.7 rule

• The interval below contains **roughly** 95% of the values in the distribution:

$$[\mu-2\cdot\sigma,\ \mu+2\cdot\sigma]$$

• To be more accurate, we need to find the x-values (quantiles) that have 0.025 probability to the left and 0.025 probability to the right, leaving 0.95 probability in the middle.

qnorm(c(0.025, 0.975)) # using a N(0,1)	<pre>qnorm(0.025) #or qnorm(0.025, lower.tail=TRUE)</pre>
## [1] -1.96 1.96	## [1] -1.96
	<pre>qnorm(0.025, lower.tail = FALSE)</pre>

[1] 1.96

Normal 68–95–99.7 rule

- The values -1.96 and 1.96 are the quantiles of a standard Normal distribution, cutting a probability of 0.025 in each of the two tails of the distribution.
- To have the quantiles for the original variable $X \sim N(\mu, \sigma)$ we need to transform Z back to X with the formula previously mentioned ($x = \mu + z \cdot \sigma$):

 $egin{array}{rcl} z=-1.96&
ightarrow &x=\mu-1.96\cdot\sigma\ z=1.96&
ightarrow &x=\mu+1.96\cdot\sigma \end{array}$

• The interval comprising exactly 95% of the values of X is the range of values from $\mu - 1.96 \cdot \sigma$ to $\mu + 1.96 \cdot \sigma$, which in mathematics is written as:

$$\left[\mu-1.96\cdot\sigma,\;\mu+1.96\cdot\sigma
ight]$$

Estimation

• Without loss of generality, we will focus on the mean as the numerical summary of data.

Population mean, μ	\rightarrow	unknown	\rightarrow	example of a parameter
$\text{Sample mean}, \bar{x}$	\rightarrow	we can compute it	\rightarrow	example of a statistic

- We are typically interested in estimating an unknown population mean μ (a parameter) using the mean computed on a random sample \bar{x} (a statistic).
 - We will equivalently call the statistic (sample mean) the estimate.
- When estimating an unknown parameter, we should report both

a) the estimate;

b) a measure of our "uncertainty" in the estimate.

Some facts

- Statistics vary from sample to sample and have a **sampling distribution**.
- The standard deviation of the sampling distribution is called the **standard error** (SE)
- Informally: SE tells us the size of the typical "estimation error" (= $\bar{x} \mu$).

• $SE = SE_{\bar{x}} = rac{\sigma}{\sqrt{n}}$

Estimation

- The estimate for a population mean is the sample mean, \bar{x} .
- Let's now turn to the key question of reporting uncertainty in the estimate:
 - How accurate is our estimate?
- In other words, how accurate is our statistic \bar{x} as an estimate of the unknown parameter μ ?
- Accuracy is a combination of two things:
 - No bias
 - Precision
- We avoid bias if we use random sampling. We have bias if our samples systematically do not include a part of the population.
 - If you choose convenience samples, you will systematically over-estimate or under-estimate the true value.
- Precision relates to the variability of the sampling distribution, and the Standard Error (SE) is used to quantify precision.
 - As the SE gets smaller, the sample means will tend to be closer to the population mean

Bias vs Precision

Sampling distribution

Sampling distribution

Sampling distribution

Part B

One sample only

One sample only

One sample only: Precision of sample mean

- If we do NOT have the population data:
 - \circ we cannot compute μ , the population mean
 - \circ we also cannot compute σ , the population standard deviation
- Recall that σ is required to assess the precision of the sample mean by computing the SE:

$$SE = rac{\sigma}{\sqrt{n}}$$

• How can we compute the SE of the mean if we **do not have data on the full population**, and we **can only afford one sample** of size *n*?

One sample only: Precision of sample mean

- We must also estimate σ with the corresponding sample statistic.
- Substitute σ with the standard deviation computed in the sample, s.
- Standard error of the mean becomes:

$$SE = rac{s}{\sqrt{n}}$$

• Report estimate (sample mean), along with a measure of its precision (the above SE).

Part C

Confidence Intervals

Key idea

- Parameter estimate = single number. Almost surely the true value will be different from our estimate.
- Range of plausible values for the parameter, called **confidence interval**. More likely that the true value will be captured by a range.

Point estimate

Confidence interval

Confidence interval

- Confidence interval (CI) = range of plausible values for the parameter.
- To create a confidence interval we must decide on a confidence level.
- Confidence level = a number between 0 and 1 specified by us. How confident do you want to be that the confidence interval will contain the true parameter value?
- The larger the confidence level, the wider the confidence interval.
 - How confident are you that I am between 39 and 42 years old?
 - How confident are you that I am between 35 and 50 years old?
 - How confident are you that I am between 18 and 70 years old?
- Typical confidence levels are 90%, 95%, and 99%.

CI for the population mean

• Recall that if $X \sim N(\mu, \sigma)$, 95% of the values are between

$$[\mu-1.96\cdot\sigma,\ \mu+1.96\cdot\sigma]$$

• The sample mean follows a normal distribution:

$$ar{X} \sim N(\mu_{\overline{X}},\sigma_{\overline{X}})$$

where:

•
$$\mu_{\overline{X}} = \mu$$

• $\sigma_{\overline{X}} = SE = \frac{\sigma}{\sqrt{n}}$

• Substitute in the interval above:

$$[\mu_{ar{X}}-1.96\cdot\sigma_{ar{X}},\ \mu_{ar{X}}+1.96\cdot\sigma_{ar{X}}]$$

• That is:

$$\left[\mu-1.96\cdotrac{\sigma}{\sqrt{n}},\ \mu+1.96\cdotrac{\sigma}{\sqrt{n}}
ight]$$

Estimates of μ and σ

- Recall that we do not have the full population data. We can only afford one sample!
- We don't have the population mean μ and we estimated it with the sample mean $ar{x}$
- However, we also don't have σ so we need to estimate it with s, the sample standard deviation:

$$\left[ar{x}-1.96\cdotrac{s}{\sqrt{n}},\ ar{x}+1.96\cdotrac{s}{\sqrt{n}}
ight]$$

- However, this interval is now wrong!
- Because we didn't know σ and we had to estimate it with s, this bring and extra element of uncertainty
- As we are unsure about the actual value of the population standard deviation, the reference distribution is no longer Normal, but a distribution that is more "uncertain" and places higher probability in the tails of the distribution.
- When the population standard deviation is unknown, the sample mean follows a t-distribution.
- The quantiles -1.96 and 1.96 refer to the normal distribution, so these are wrong and we need to find the correct ones!

t-distribution

t-distribution

- A distribution similar to the standard Normal distribution, also with a zero mean
- Depends on a number called **degrees of freedom** (DF) = sample size 1. That is, df = n 1.
- We write the distribution as:

t(n-1)

• Suppose the sample size is 20. In R:

qt(0.025, df = 19) # quantile = t-value with 0.025 prob to the LEFT

[1] -2.093

pt(-2.093, df = 19) # prob to the LEFT of t = -2.093

[1] 0.025

Finally: the correct confidence interval

- Now we can finally compute the correct confidence interval.
- We need to replace the quantiles with those from the t(n-1) distribution, denote them by $-t^*$ and $+t^*$, and these will be different all the time as they depend on the sample size.
- Generic form the of the CI for the mean:

$$\left[ar{x}-t^*\cdot rac{s}{\sqrt{n}},\;ar{x}+t^*\cdot rac{s}{\sqrt{n}}
ight]$$

• Generic form the of the 95% CI for the mean with a sample of size n = 20:

qt(c(0.025, 0.975), df = 20 - 1)

[1] -2.093 2.093

$$\left[ar{x}-2.093\cdotrac{s}{\sqrt{n}},\;ar{x}+2.093\cdotrac{s}{\sqrt{n}}
ight]$$

Other confidence levels

• Generic form the of the 99% CI for the mean with a sample of size n = 20:

qt(c(0.005, 0.995), df = 20 - 1)

[1] -2.861 2.861

$$\left[ar{x}-2.861\cdotrac{s}{\sqrt{n}},\ ar{x}+2.861\cdotrac{s}{\sqrt{n}}
ight]$$

Example: 95% CI for the pop. mean salary

- Parameter of interest: mean yearly salary of a NFL player in the year 2019, denoted μ .
- Sample of 50 players:

```
library(tidyverse)
nfl_sample <- read_csv("https://uoepsy.github.io/data/NFLSample2019.csv")
dim(nfl_sample)</pre>
```

[1] 50 5

```
head(nfl_sample)
```

```
## # A tibble: 6 × 5
    Player
                    Position Team
                                   TotalMoney YearlySalary
##
     <chr>
                                           <dbl>
##
                <chr>
                             <chr>
                                                        <dbl>
## 1 Najee Goode
                    430LB
                             Jaguars
                                          0.805
                                                       0.805
## 2 Jack Crawford
                    43DT
                             Falcons
                                          9.9
                                                       2.48
                             Lions
## 3 Tra Carson
                    RB
                                          1.23
                                                       0.615
## 4 Jordan Richards S
                             Ravens
                                          0.805
                                                       0.805
##
  5 Desmond Trufant CB
                             Falcons
                                         68.8
                                                      13.8
## 6 Alex Anzalone
                    430LB
                              Saints
                                           3.47
                                                       0.866
```

Example: 95% CI for the pop. mean salary

xbar <- mean(nfl_sample\$YearlySalary) xbar

[1] 3.359

s <- sd(nfl_sample\$YearlySalary)
s</pre>

[1] 4.312

n <- nrow(nfl_sample)
n</pre>

[1] 50

SE <- s / sqrt(n) SE

tstar <- qt(c(0.025, 0.975), df = n-1) tstar	
## [1] -2.01 2.01	
xbar - 2.01 * SE	
## [1] 2.133	
xbar + 2.01 * SE	
## [1] 4.584	
or:	
xbar + tstar * SE	
## [1] 2.133 4.584	

[1] 0.6098

Example: 95% CI for the pop. mean salary

- The 95% confidence interval for the mean salary of **all** NFL players in the year 2019 is [2.13, 4.58] million dollars.
- Write this up as:
 - We are 95% confident that the average salary of a NFL player in 2019 was between 2.13 and 4.58 million dollars.
- If it makes more sense in your sentence, you can report the sample mean followed by the CI in brackets (to tell the reader how precise your estimate is).
- Use the format M = ..., 95% CI [..., ...].

Part D

Warning on interpretation

- If you had many random samples and computed a 95% confidence interval from each sample:
 - about 95% of those intervals will contain the true parameter value
 - \circ about 5% of those intervals will **not** contain the true parameter value
- Example 1: if you had 100 random samples and computed a 95% confidence interval from each sample:
 - about 95 (= 100 * 0.95) of those intervals will contain the true parameter value
 - about 5 (= 100 * 0.05) of those intervals will **not** contain the true parameter value
- Example 2: if you had 20 random samples and computed a 95% confidence interval from each sample:
 - about 19 (= 20 * 0.95) of those intervals will contain the true parameter value
 - about 1 (= 20 * 0.05) of those intervals will **not** contain the true parameter value

- Consider again example 2, where you have 20 random samples and built a confidence interval from each sample.
- We speak about **probability** when we refer to the **collection** of those 20 confidence intervals. That is, the probability the that **collection** of confidence intervals will contain the true parameter value is 0.95.
 - Think of this as

$$\frac{\text{number of CIs containing }\mu}{\text{total number of CIs}} = \frac{19}{20} = 0.95$$

- We speak of **confidence** when we refer to just **one** confidence interval that we have computed. Say the 95% CI is [2.5, 5.3] min. We would say: we are 95% confident that the population mean is between 2.5 and 5.3 minutes.
 - It is **wrong** to say that there is a 95% probability that the population mean is between 2.5 and 5.3 minutes.

This week

Tasks

- Attend both lectures
- Attend your lab and work together on the lab tasks
 - Tip: read the worked example in advance!
- Complete any lecture activities and/or readings
- Complete the weekly quiz
 - Opens Monday at 9am
 - Closes Sunday at 5pm

Support

- Office hours: for one-to-one support on course materials or assessments (see LEARN > Course information > Course contacts)
- **Piazza**: help each other on this peer-to-peer discussion forum
- Student Adviser: for general support while you are at university (find your student adviser on MyEd/Euclid)