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Course Overview

Exploratory Data
Analysis

Research design and
data

Describing categorical
data

Describing continuous
data

Describing relationships

Functions

Probability

Probability theory

Hypothesis testing (p-
values)

Hypothesis testing and
confidence intervals

Probability rules

Random variables
(discrete)

Random variables
(continuous)

Sampling

Common
hypothesis tests

One sample t-test

Paired samples t-test

Correlation
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This Week's Learning Objectives

1. Understand the key difference between discrete and continuous probability distributions
2. Apply understanding of continuous probability distributions to the example of a normal distribution
3. Understand how to use a range from a continuous probability distribution

4. Introduce other continuous probability distributions
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Discrete vs. continuous

e Recall that a discrete probability distribution describes a random variable that produces a discrete set of outcomes

e By contrast, a continuous probability distribution describes a random variable that produces a continuous set of

outcomes

o Temperature
o Height
o Reaction Time

e |f you have arbitrary precision of measurement, you have a continuous random variable

e While a discrete probability distribution is jagged, a continuous probability distribution is smooth
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Discrete vs. continuous

e Continuous probability distributions differ from discrete in two other important ways
o PX=2)=0

o Continuous probability distributions are described using the probability density function (PDF), rather than
the probability mass function

e Now, let's take a look at perhaps the most widely used continuous probability distribution...
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Normal distribution

e Anormal distribution (AKA the Gaussian 0.4-
distribution) is a continuous distribution
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Normal: PDF

A bit scary!

But the basic points are:

o [tisafunction of data x
o And two parameters p and o (mean and SD)

There is not one single normal distribution

We have a family of different distributions that are defined by their mean, u, and standard deviation, o
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The Standard Normal Distribution

e The standard normal distribution is a normal distribution where y = 0ando =1
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Different Normal Distributions - Adjusting

e Adjusting i changes where the curve is centered on the z-axis
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Different Normal Distributions - Adjusting o

e Adjusting o changes the shape of the curve
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Properties of Normal Distributions

e Properties of any normal distribution:

o =2 68% of area falls under 1 SD on either side
of mean

o =2 95% of area falls under 2 SD on either side
of mean

m Exactly 95% falls under +/- 1.96 SD

0 22 99.75% of area falls under 3 SD on either

side of mean
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Questions?
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Using the PDF of the normal distribution

e Let's use the normal distribution to illustrate how continuous probability distributions work

e With a discrete random variable it makes sense to ask: 'What's the probability associated with a specific value of
the random variable?".

o e.g. what the probability of getting heads on a fair coin?
e With a continuous random variable it makes sense to ask about ranges of scores

o e.g. what's the probability of sampling someone between 1.75 and 1.8 meters tall if we sample students from a
university?

o Remember that the probability of any single value (e.g. exactly 1.764736525678943655 meters) is 0

o The total probability (1) is divided between an infinite number of possible values that the variable could take,
as the variable is continuous
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Using the PDF of the normal distribution

e Let'simagine thatin some course, student heightis
normally distributed

o pu = 168cm
o o=7.5cm

o
o
K

e We can ask what is the probability of sampling
someone between 175 and 180 cm?

Probability Density
S
N

o This question translates to:
P(175 < x < 180) =7
o Let's unpack this...

0.00
140 160 180 200
Height
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Using the PDF of the normal distribution

P(175 < z < 180) =?

e Let'sdraw these boundaries on our plot

Probability Density
o

Height
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Using the PDF of the normal distribution

P(175 < z < 180) =7
e Let'sdraw these boundaries on our plot

e Whatis the value of the area under the curve
between these two lines?

Probability Density
o

Height
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Using the PDF of the normal distribution

e We get the area under a curve by calculating an

integral
b
/ f(a)dx

o Don't worry, you don't need to know the
details of integrals, but you may encounter the
equation above

o This equation can be read as: The integral of
values falling between vertical lines a and b on
the function a of variable

o We can calculate this value using the
probability density function

o
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Using the PDF of the normal distribution

e pnorm(x, mean, sd)

o xisthe upper threshold; the function will
output the probability of all values less than 0.04-
this

o mean and sd give the parameters of the
function

Probability Density

o Returns the area under the normal
distribution below x

0.00

o Remember, the normal curve changes based , , ,
. 140 160 180 200
on the values of i and o, so it makes sense Height

that this PDF requires these parameters
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Using the PDF of the normal distribution

e pnorm(x, mean, sd)

o xisthe upper threshold; the function will
output the probability of all values less than
this

o mean and sd give the parameters of the
function

o Returns the area under the normal
distribution below x

o Remember, the normal curve changes based
on the values of 1 and o, so it makes sense

that this PDF requires these parameters
pnorm(180, mean=168, sd=7.5)

## [1] 0.9452007

Test Your Understanding: How do you
interpret this output?
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Using the PDF of the normal distribution

e We can also calculate the area under the curve
below 175:

o

<)

s
'

pnorm(175, mean=168, sd=7.5)

## [1] 0.8246761

Probability Density

~82.47%

o

o

¥
'

0.00

' ' ' '
140 160 180 200
Height

Test Your Understanding: Now you know that 94.52% of student heights fall below 180 cm, and 82.47% of
student heights fall below 175 cm. How do you calculate the probability of selecting a student whose
height falls between 175-180 cm?
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Using the PDF of the normal distribution

e P(175 < z < 180) = P(X < 180) — P(X < 175)

pl80 <- pnorm(180, mean=168, sd=7.5)
pl75 <- pnorm(175, mean=168, sd=7.5)

p180-pl75

Probability Density

## [1] 0.1205247

e So, the probability of randomly selecting a student
with a height between 175 and 180is 0.12
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Using the PDF of the normal distribution

e We can also ask about the probability of a sampled
element having a value from one of 2+ ranges

e What is the probability that a person will have a
height below 151 or greater than 185?
P(x < 151 or x > 185)

pnorm(151, mean=168, sd=7.5)
## [1] 0.0117053
1 - pnorm(185, mean=168, sd=7.5)

## [1] 0.0117053

e Test your understanding: Why are we subtracting a
value from 1 here?
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Using the PDF of the normal distribution

e Plx <151Ux > 185) = P(z < 151) 4+ P(x > 185)

e 0.01 +0.01 =0.02

Probability Density
o

Height
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Using the PDF of the normal distribution

e What if | wanted to know where the 5% of the most extreme values (i.e., smallest and largest) in this distribution
fall?

o The normal distribution is symmetric, which means that there are the same number of extreme values at the
bottom and top end

o This means the most extreme 5% will be the 2.5% at the bottom of the distribution and the 2.5% at the top

o So our question is: What is the height below which there are only 2.5% of students, and what is the height
above which there are only 2.5% of students?
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Using the PDF of the normal distribution

e To get these values, you can use gnorm(p,
mean, sd) -thisistheinverse function of
pnorm()

e Foranormally distributed range of heights with a
mean of 168 cm and a SD of 7.5 cm:

Probability Density

e The height below which 2.5% of students fall:

gnorm(.025, mean=168, sd=7.5)

## [1] 153.3003 4 p

140 150 160 170 180 190 200

e The height above which 2.5% of students fall: Height

gnorm(.975, mean=168, sd=7.5)

## [1] 182.6997
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Take this knowledge forward

e These examples might seem a bit far-fetched (when will you ever need to calculate extreme heights?), but this will
be incredibly relevant when you discuss:

o 1-and 2-tailed distributions
o p-values
o Distributions of test statistics

e You may find it helpful to come back and review these slides when you get to these topics later in the course
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Questions?
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Remember z-scores

e |tisquite typical to present a normal distribution in
terms of z-scores.
e z-scores standardise values of x
o The numerator: converts x to deviations from
the mean
o The denominator: scales these deviation
values based on the spread of the variable
(SD)
e Theresultis the standard normal distribution,
also known as the z-distribution
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Standard normal vs. t distribution

e There are other continuous probability
distributions you'll be working with next semester,
such as the t-distribution

e The t distribution is a bit like the z-distribution, but
the shape differs slightly

o When calculating t, we replace the population
SD (o) with the sample SD (s)

o Asaresult, the tails of the t-distribution are
slightly higher to account for extra variability,
or uncertainty from using an estimate (s)
rather than the actual population value (o)
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Summary of today

e Continuous probability distributions

e The normal distribution

e Using the normal distribution to make estimates about the probability of events
e Using the normal distribution to find values at the extremes of the distribution

e The normal distribution and the ¢-distribution

e Tomorrow, I'll present a live R session focused on continuous probability distributions

e Next week, we will talk about samples and populations
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This week

3

Tasks Support

e Attend both lectures e Office hours: for one-to-one support on course
materials or assessments

e Attend your lab and work together on the lab tasks (see LEARN > Course information > Course
contacts)

e Complete the weekly quiz

e Piazza: help each other on this peer-to-peer

° Opened Monday at 9am discussion forum

o Closes Sunday at 5pm

e Student Adviser: for general support while you are
at university
(find your student adviser on MyEd/Euclid)
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