Week 2: Describing Categorical Data Data Analysis for Psychology in R 1

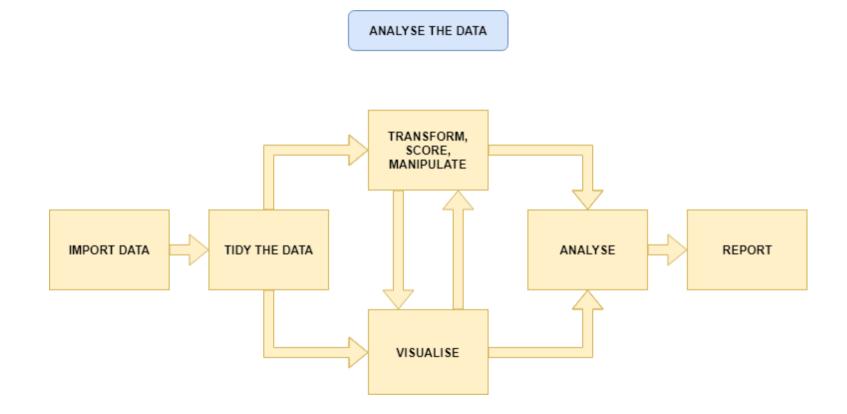
Patrick Sturt

Department of Psychology The University of Edinburgh

Course Overview

	Research design and data	
	Describing categorical data	
Exploratory Data Analysis	Describing continuous data	
	Describing relationships	
	Functions	
Probability	Probability theory	
	Probability rules	
	Random variables (discrete)	
	Random variables (continuous)	
	Sampling	

Foundations of inference	Confidence intervals
	Hypothesis testing (p-values)
	Hypothesis testing (critical
	values)
	Hypothesis testing and
	confidence intervals
	Errors, power, effect size,
	assumptions
Common hypothesis tests	One sample t-test
	Independent samples t-test
	Paired samples t-test
	Chi-square tests
	Correlation


Week's Learning Objectives

1. Understand the different quantities used to describe the distributions of data.

- 2. Understand the appropriate visualization for the distribution of categorical data.
- 3. Understand methods to calculate the spread for the distribution of categorical data.
- 4. Understand methods to calculate central tendency for the distribution of categorical data.

Topics for today

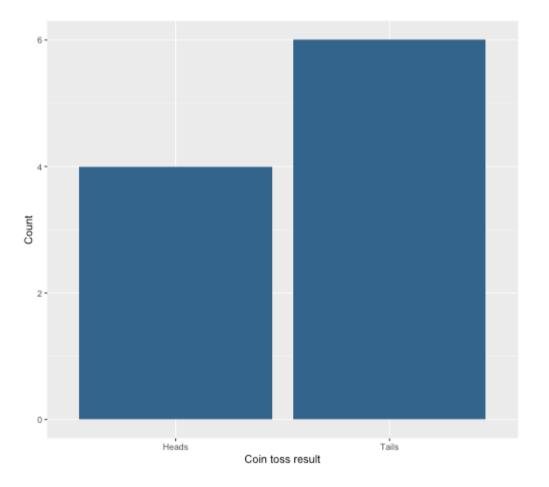
- Last week we looked at definitions of different types of data.
- Now we are going to move on to how we describe different types of data.
- First, we will look at categorical variables.

Recap: Categorical data

• Nominal

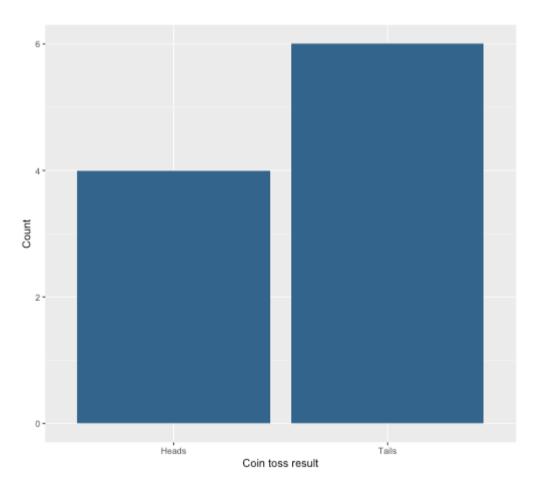
- No order to the levels of the variable
- E.g. "Country of residence", "Degree Studied"
 - 1 = Psychology
 - 2 = Philosophy
 - 3 = English Language
- We can give each response a numerical value, but convey no meaning beyond group membership
- Ordinal
 - Numerical values denote order.
 - E.g. "Level of Education"
 - 1 = GCSE
 - 2 = A-level
 - 3 = University undergraduate degree
 - 4 = University postgraduate degree

Frequency Distribution

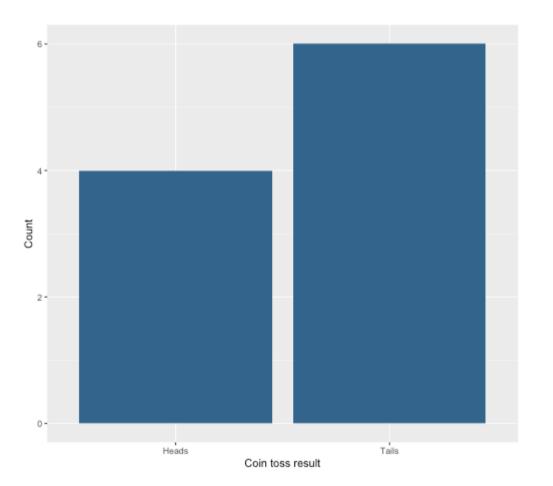

"a mathematical function showing the number of instances in which a variable takes each of its possible values."

• Or put simply

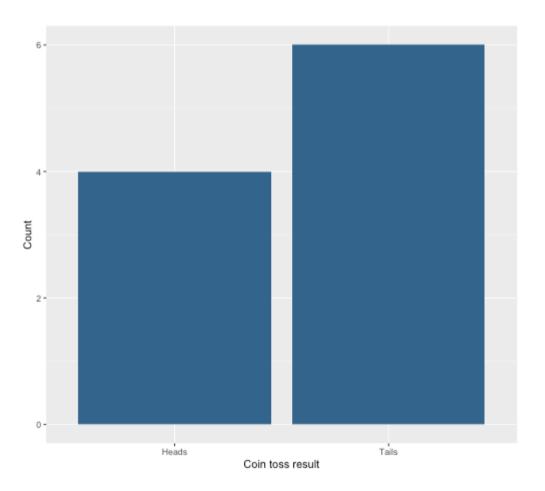
A plot showing the number of instances of each value of a variable


An example

- I toss a coin 10 times
- I plot the number of instances of head and tails.

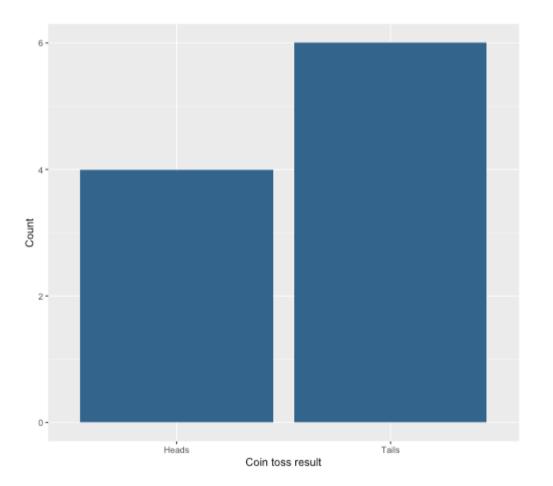

Plotting fundamentals

- There are many types of graph, all of which are intended to summarise different types of data, or the relations between data.
- We are going to spend a lot of time dealing with plots this semester.
- Let's pause for a moment and consider the basic structure


Plotting fundamentals

- Data
- Axes
 - (aesthetics in ggplot language also includes size, colours etc.)
- Axes have scales
- Geometric objects
 - (geoms in ggplot language; i.e. bars, points, lines)

Bar plot

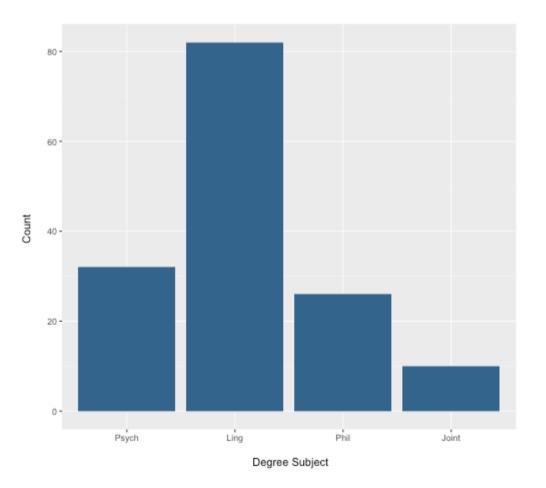

- Bar plots are used to show frequency distributions of categorical variables.
- Our example:
 - **Data** = result of our 10 coin tosses.
 - X-axis: values of variable (here "Heads" or "Tails)
 - Scale = two discrete values
 - Y-axis: Frequency
 - Scale = count

Bar plot

```
ggplot(data=df, aes(x=dat)) +
geom_bar(fill="steelblue4") +
labs(x = "Coin toss result", y = "Count") +
scale_x_discrete(labels = c("Heads","Tails"))
```

- df = data set
- aes(x=dat) = the variable dat is used on x-axis
- geom_bar() = make a bar plot
 fill="steelblue4" = make the bars blue
- labs = what to label each axis
- scale_x_discrete = what to label to tick marks on
 the x-axis

A more realistic example


- Suppose I am running a stats summer school.
- It is open to all students in PPLS
 - All degrees
 - All years
- I gather data on all 150 attendees.
 - **ID** = unique identifier
 - **Degree = degree studied**
 - Year = year of study
 - Score1 = pre-summer school score
 - Score2 = post-summer school score
- Let's describe Degree and Year

Data from 10 participants

ID	Degree	Year	Score1	Score2
ID101	Psych	2	71	74
ID102	Ling	2	65	72
ID103	Ling	2	64	72
ID104	Phil	1	69	74
ID105	Ling	3	62	69
ID106	Ling	1	68	72
ID107	Phil	3	66	75
ID108	Psych	1	64	71
ID109	Psych	3	65	73
ID110	Ling	1	64	72

Bar plot for Degree

```
ggplot(data=ex1, aes(x=Degree)) +
geom_bar(fill="steelblue4") +
labs(x = "Degree Subject", y = "Count")
```


Describing distributions

- We typically want to know something about the:
 - central point, and
 - the spread (or dispersion around centre point)

• Central tendency

- a set of statistics that describe the central point of frequency distributions.
- typically referred to as "averages"
 - But this can have many meanings.

• Dispersion

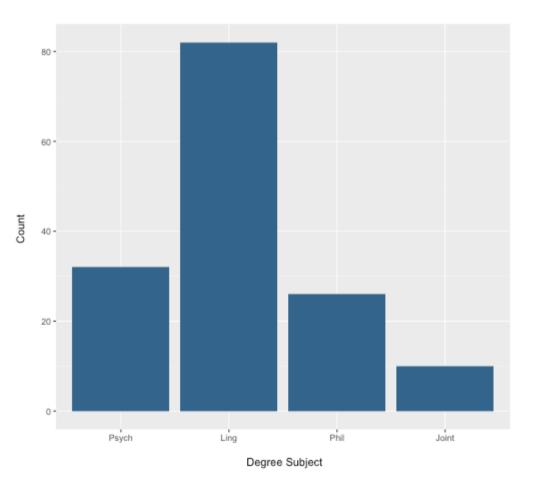
• a set of statistics that descibe the variation in frequency distributions

Categorical Data

- Nominal
 - Central tendency = Mode
 - Variability = Relative frequency
- Ordinal
 - Central tendency = mode or median
 - Variability = Range, inter-quartile range

Frequency Table: Degree

- A frequency table shows:
 - Possible outcomes
 - $\circ~$ Count of the number of observations per outcome
 - $\circ~$ We can also add the count as a percentage
- The code:
 - **count** provides the frequency of each value
 - mutate is used to calculate new variables
 - \circ round(n/sum(n)*100,2)
 - take the column created by count, n,
 - divide each value by the sum of counts (=sample size)
 - *100 to turn to a percent
 - round to 2 decimal places


```
ex1 |>
  count(Degree) |>
  mutate(
    Percent = round((n/sum(n))*100,2)
)
```

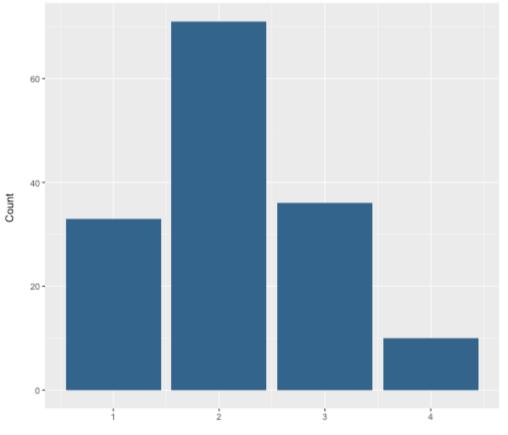
```
## # A tibble: 4 × 3
##
    Degree
               n Percent
    <fct> <int>
                   <dbl>
##
              32 21.3
## 1 Psych
## 2 Ling
              82
                 54.7
## 3 Phil
              26
                 17.3
## 4 Joint
              10
                    6.67
```

Mode: Degree

Mode: The most commonly observed value in the data set.

- It is of course possible that we observe two (or more) values with equal frequency.
- We then have a **multi-modal** distribution.

Mode: Degree


Mode: The most commonly observed value in the data set.

- It is of course possible that we observe two (or more) values with equal frequency.
- We then have a **multi-modal** distribution.

ex1 |>
 count(Degree)

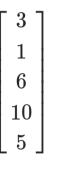
##	#	A tibb	le: 4 ×	2
##		Degree	n	
##		<fct></fct>	<int></int>	
##	1	Psych	32	
##	2	Ling	82	
##	3	Phil	26	
##	4	Joint	10	

Bar plot for Year

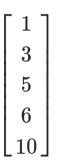
Degree Year

Median: Year

Median: is the value for which half the data falls above, and half below the given value.


- To calculate the median:
 - Rank order the data.
 - Find the middle value.
- The position of the median is given by:

$$median = rac{n+1}{2}$$

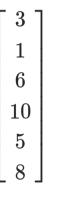

- For an odd number of data points, this will equal a whole number.
- For an even number of data points, this will equal a mid-point between two values.
 - e.g. 5.5 would indicate the median is between the 5th and 6th position.
 - The median is then equal to the average of these numbers.

Calculating median: Small example

Odd number of elements

Rank order

Calculate position of median


$$median=rac{n+1}{2}=rac{5+1}{2}=3$$

Apply to ordered data

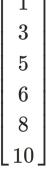
• The third value in the ordered vector = 5

Calculating median: Small example

Even number of elements

Calculate position of median

$$median = rac{n+1}{2} = rac{6+1}{2} = 3.5$$


Apply to ordered data

- The 3rd value = 5
- The 4th value = 6

Average

$$\frac{5+6}{2} = 5.5$$

Rank order

Median: Year

- For small examples, hand calculation is fine.
- But we have 150 data points!
- Thank goodness for computers and R

median(ex1\$Year)

[1] 2

Range: Year

- The **range** of the data is simply the value between two points.
 - We can define these points in different ways.
- Simplest is the total range in the data (maximum minimum).

min(ex1\$Year)	
## [1] 1	
max(ex1\$Year)	
## [1] 4	
range(ex1\$Year)	
## [1] 1 4	

Inter-quartile range: Year

- The inter-quartile range (IQR) is the difference between the 1st and 3rd quartile.
 - Rank the data
 - Split data into four equal blocks.
 - Quartiles are the points which divide these blocks.
 - They fall at 25%, 50% and 75% of rank ordered data.
 - $\circ~$ IQR is the difference between 25% and 75%
- For ordinal data:
 - \circ The first, or lower quartile is the first category for which the cumulative percentage is $\geq 25\%$.
 - $\circ~$ The median is the first category for which the cumulative percentage is $\geq 50\%.$
 - \circ The third, or upper quartile is the first category for which the cumulative percentage is $\geq 75\%$.

What is cumulative percentage?

- Remember our percentage calculations?
- Well, imagine stacking these on top of one another...

```
ex1 |>
  count(Year) |>
  mutate(
    Percent = round((n/sum(n))*100,2),
    Cumulative = cumsum(Percent)
  )
```

```
## # A tibble: 4 × 4
             n Percent Cumulative
##
     Year
##
    <dbl> <int> <dbl>
                           <dbl>
## 1
        1
            33
               22
                           22
## 2
       2 71 47.3
                        69.3
     3 36
## 3
               24
                           93.3
## 4
       4
            10
                 6.67
                           100
```

• More on this in labs.

Inter-quartile range: Year

- We can calculate the IQR directly using the function IQR()
- Or calculate various quantiles using the quantile() function

<pre>quantile(ex1\$Year, c(.25, .75))</pre>					
## 25% 75% ## 2 3					
• So the 25th percentile = 2, and the 75th = 3					

• So the inter-quartile range is....

IQR(ex1\$Year)

[1] 1

Ranks and order

- Notice how both the median and the IQR make use of ranked data.
- Ranked = ordered.
- Hence use with ordinal data.

Summary of today

- To describe nominal data we use
 - Bar plots
 - \circ Mode
 - Frequency tables
- To describe ordinal data we use:
 - Bar plots
 - Mode or median
 - Range (total, IQR)

This week

Tasks

- Attend both lectures
- Attend your lab and work together on the lab tasks
- Complete the second practice quiz
 - Opens Monday at 9am
 - Closes Sunday at 5pm

Support

- Office hours: for one-to-one support on course materials or assessments (see LEARN > Course information > Course contacts)
- **Piazza**: help each other on this peer-to-peer discussion forum
- Student Adviser: for general support while you are at university (find your student adviser on MyEd/Euclid)