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Foundations of
inference

Confidence intervals
Hypothesis testing (p-values)
Hypothesis testing (critical
values)
Hypothesis testing and
confidence intervals
Errors, power, effect size,
assumptions

Common
hypothesis tests

One sample t-test
Independent samples t-test
Paired samples t-test
Chi-square tests

Course Overview

Exploratory Data
Analysis

Research design and data
Describing categorical data
Describing continuous
data
Describing relationships
Functions

Probability

Probability theory
Probability rules
Random variables
(discrete)
Random variables
(continuous)
Sampling Correlation
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Learning Objectives
Understand the difference between  goodness-of-fit and  test of independence
Understand how to perform a  goodness-of-fit and interpret results
Understand how to perform a  test of independence and interpret results

χ2 χ2

χ2

χ2
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Introduction to χ2
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Moving on From -tests...
-tests have allowed you to make comparisons using continuous data:

One continuous variable against a single value (one sample -test)
A continuous outcome variable from two separate groups (independent samples -test)
A continuous outcome variable from one group at two time points (paired samples -test)

You may instead want to test whether data are distributed across categories in the way that you would expect:

Is your sample distributed equally across levels of education?
Is smoking (Y/N) associated with cardiovascular disease (Y/N)?

In this case, you will will need a test that checks whether data are grouped according to your expectations

-tests are used to compare frequencies across categories in your data

t

t

t

t

t

χ2
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 Distribution  Distribution

-tests vs -tests
Process similar to a -test:

1. Compute a test statistic
2. Locate the test statistic on a distribution that reflects the probability of each test statistic value, given that  is true
3. If the probability associated with your test statistic is small enough, your results are considered significant

Distribution
Like the -distribution, the shape of the distribution depends on the degrees of freedom
Unlike the -distribution, df in a  test isn't computed using sample size, but the number of groups within your data

χ2 t

t

H0

t

t χ2

t χ2

6 / 61



As the number of comparison groups increases, the
distribution curve flattens

Larger  values become more probable
A wider range of  values become more likely

The  distribution begins at 0

Categorical variables don't have direction
-value is computed only in one direction (right-

tail) as the Probability of observing a  statistic as
big or bigger than the one obtained
We can investigate this further by looking at the 
formula

 Distribution

 Distributionχ2

χ2

χ2

χ2

p

χ2

χ2

χ2
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Data Requirements & Assumptions of  Tests
Data Requirements

Variables should be measured at an ordinal or nominal level (i.e., categorical data)

Assumptions
Expected counts  5
Observations are independent

Each observation appears only in a single cell

χ2

≥

8 / 61



Types of  Tests
Goodness of Fit

Test of Independence

χ2
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Questions?
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 Goodness of Fit Testχ2
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Tests whether the proportions / relative frequencies you
actually have are consistent with the expected
proportions / relative frequencies

Looks at the distribution of data across a single category

Hypotheses:

 Some 

Expected Values Observed Values

 Goodness of Fit Testχ2

H0 : p1 = p1,0,  p2 = p2,0,  . . . ,  pk = pk,0

H1 : pi ≠ pi,0
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 Goodness of Fit Test

where:

 = sum up

 : Sum all values from levels 1 through k

 = Expected Cases

The values that you expect, given  is true

 = Observed Cases

The values you actually have

 : Current level

χ2

χ2 =
k

∑
i=1

(Oi−Ei)2

Ei

Σ

k

∑
i=1

E

H0

O

i
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 Goodness of Fit Test Example
A new flower shop is trying to decide which days of the week they will be open

They want to know whether order number is consistent across days of the week

They count the total number of orders they take each day of the week over the course of a month

χ2

14 / 61



Data
## # A tibble: 7 × 2
##   Day       Orders
##   <fct>      <dbl>
## 1 Monday        54
## 2 Tuesday       39
## 3 Wednesday     44
## 4 Thursday      47
## 5 Friday        68
## 6 Saturday      72
## 7 Sunday        53
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I elect to use an alpha  of .05

My hypotheses are:

: Orders will be consistent throughout the week

: Orders will differ across the week

Some 

Day Orders

Monday 54

Tuesday 39

Wednesday 44

Thursday 47

Friday 68

Saturday 72

Sunday 53

Hypotheses

(α)

H0

pMonday = pTuesday = ⋯ =  pSunday

H1

pi ≠ pi0
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Visualisation
ggplot(data = flowerDat, aes(Day, Orders, fill = Day)) +
  geom_col()
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Performing a  Goodness of Fit Test
Compute the test statistic

where:

 = sample size
 = the hypothesized population proportion for the category under the null hypothesis

In this example, we expect each level to be approximately equal, so the expected proportion will be the same across levels:

n <- sum(flowerDat$Orders)
p <- (1/length(levels(flowerDat$Day))) # i.e., 1/7

E <- n * p
round(E, digits = 2)

## [1] 53.86

χ2

χ2 =
k

∑
i=1

(Oi−Ei)2

Ei

Ei = n ⋅  pi

n

p
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Visualisation
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Performing a  Goodness of Fit Test
Compute the test statistic

Day Orders Expected

Monday 54 53.86

Tuesday 39 53.86

Wednesday 44 53.86

Thursday 47 53.86

Friday 68 53.86

Saturday 72 53.86

Sunday 53 53.86

χ2

χ2 =
k

∑
i=1

(Oi−Ei)2

Ei
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Performing a  Goodness of Fit Test
Compute the test statistic

Day Orders Expected Difference

Monday 54 53.86 0.14

Tuesday 39 53.86 -14.86

Wednesday 44 53.86 -9.86

Thursday 47 53.86 -6.86

Friday 68 53.86 14.14

Saturday 72 53.86 18.14

Sunday 53 53.86 -0.86

χ2

χ2 =
k

∑
i=1

(Oi−Ei)2

Ei
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Performing a  Goodness of Fit Test
Compute the test statistic

Day Orders Expected Difference Squared

Monday 54 53.86 0.14 0.02

Tuesday 39 53.86 -14.86 220.73

Wednesday 44 53.86 -9.86 97.16

Thursday 47 53.86 -6.86 47.02

Friday 68 53.86 14.14 200.02

Saturday 72 53.86 18.14 329.16

Sunday 53 53.86 -0.86 0.73

χ2

χ2 =
k

∑
i=1

(Oi−Ei)2

Ei
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Performing a  Goodness of Fit Test
Compute the test statistic

Day Orders Expected Difference Squared SqbyExp

Monday 54 53.86 0.14 0.02 0.00

Tuesday 39 53.86 -14.86 220.73 4.10

Wednesday 44 53.86 -9.86 97.16 1.80

Thursday 47 53.86 -6.86 47.02 0.87

Friday 68 53.86 14.14 200.02 3.71

Saturday 72 53.86 18.14 329.16 6.11

Sunday 53 53.86 -0.86 0.73 0.01

χ2

χ2 =
k

∑
i=1

(Oi−Ei)
2

Ei
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Performing a  Goodness of Fit Test
Compute the test statistic

 16.62

Day Orders Expected Difference Squared SqbyExp

Monday 54 53.86 0.14 0.02 0.00

Tuesday 39 53.86 -14.86 220.73 4.10

Wednesday 44 53.86 -9.86 97.16 1.80

Thursday 47 53.86 -6.86 47.02 0.87

Friday 68 53.86 14.14 200.02 3.71

Saturday 72 53.86 18.14 329.16 6.11

Sunday 53 53.86 -0.86 0.73 0.01

χ2

χ2 =
k

∑
i=1

=
(Oi−Ei)2

Ei
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where  = number of levels within categorical variable

so, in our example:

 = number of days in the week

Performing a  Goodness of Fit Test
Find the test statistic on the distribution

χ2

χ2 = 16.62

df = k − 1

k

k

df  =  (7 − 1)  =  6
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What proportion of the plot falls in the shaded area?

Performing a  Goodness of Fit Test
Compute the probability of obtaining a  statistic at least as extreme as the observed one, if  is true

χ2

χ2 H0

26 / 61



What proportion of the plot falls in the shaded area?

pchisq(x2_stat_gof, 
       df = 6, 
       lower.tail = FALSE)

## [1] 0.01080571

The probability that we would have a  value as
extreme as 16.62 if  is true is only 0.011

Performing a  Goodness of Fit Test
Compute the probability of obtaining a  statistic at least as extreme as the observed one, if  is true

χ2

χ2 H0

χ2

H0
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#Option 1
observed <- c(54, 39, 44, 47, 68, 72, 53)
expected <- c(1/7,1/7,1/7,1/7,1/7,1/7,1/7)
GOFtest <- chisq.test(x = observed, p = expecte
GOFtest

## 
##     Chi-squared test for given probabilities
## 
## data:  observed
## X-squared = 16.615, df = 6, p-value = 0.01081

where:
x: A numerical vector of observed frequencies
p: A numerical vector of expected proportions

#Option 2
GOFtest <- chisq.test(flowerDat$Orders)
GOFtest

## 
##     Chi-squared test for given probabilities
## 
## data:  flowerDat$Orders
## X-squared = 16.615, df = 6, p-value = 0.01081

Performing a  Goodness of Fit Test in Rχ2
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In R

GOFtest$residuals

## [1]  0.01946616 -2.02448072 -1.34316509
## [4] -0.93437571  1.92714991  2.47220241
## [7] -0.11679696

By Hand

Need to calculate separately for each level

Example of number of flowers sold on a Monday:

Exploring our Results Further
If our results are significant, we are likely interested in knowing which levels within our category had the biggest differences

We can get this information by looking at the Pearson residuals (AKA, standardized residuals)

Oi−Ei

√Ei

= 0.01954−53.86

√53.86
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Positive residuals indicate that the observed frequency
of the corresponding level is higher than the expected
frequency

Negative residuals indicate that the observed frequency
of the corresponding level is lower than the expected
frequency

More extreme residuals indicate that the values are
contributing more strongly to the results

Values  -2 indicate the observed frequency of that
level is much lower than expected

Values  2 indicate the observed frequency of that
level is much higher than expected

Day Orders Residuals

Monday 54 0.02

Tuesday 39 -2.02

Wednesday 44 -1.34

Thursday 47 -0.93

Friday 68 1.93

Saturday 72 2.47

Sunday 53 -0.12

Exploring our Results Further

≤

≥
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If you owned the flower shop, which two days would you
choose to close each week?

Day Orders Residuals

Monday 54 0.02

Tuesday 39 -2.02

Wednesday 44 -1.34

Thursday 47 -0.93

Friday 68 1.93

Saturday 72 2.47

Sunday 53 -0.12

Drawing Conclusions
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Write Up
A  Goodness of Fit test was conducted in order to determine whether the proportion of flower orders was equal across each day
of the week. The goodness of fit test was significant , and thus, with , we would
reject the null hypothesis as the proportion of flower orders differed across the days of the week.

χ2

(χ2(6,n = 377) = 16.62, p = .011) α = .05
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Questions?
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 Test of Independenceχ2
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Checks whether two categorical variables from a single
population are independent of each other

Specifically, tests whether membership in Variable 1 is
dependent upon membership in Variable 2

Hypotheses:

 Variables A and B are independent

 There is an association between Variable A
and Variable B

Expected Values

Observed Values

 Test of Independenceχ2

H0 :

H1 :
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 Test of Independence

where:

 = sum up

 = Expected cases

 = Observed cases

 : current level within Variable A

 : current level within Variable B

 : total levels within Variable A

 : total levels within Variable B

χ2

χ2 =
r

∑
i=1

c

∑
j=1

(Oij−Eij)2

Eij

Σ

E

O

i

j

r

c
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Example
The flower shop is trying to decide on their flower stock

They want to know whether the flower type that sells the best depends on the season

Hypotheses:

: Flower orders will be independent of season

: Flower orders will be dependent on season

H0

H1
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First 6 rows:

## # A tibble: 6 × 2
##   Season Flowers
##   <fct>  <fct>  
## 1 Spring Roses  
## 2 Spring Roses  
## 3 Spring Roses  
## 4 Spring Roses  
## 5 Spring Roses  
## 6 Spring Roses

Create a contingency table:

#Option 1
xtabs(~ Season + Flowers, data = seasonDat)

#Option 2 
table(seasonDat$Season, seasonDat$Flowers)

##         
##          Lilies Roses Tulips
##   Spring    186   232    185
##   Summer    172   228    192
##   Autumn    168   219    164
##   Winter    183   246    173

Data
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Visualisation
library(ggmosaic)
ggplot(data = seasonDat) +
  geom_mosaic(aes(x = product(Flowers, Season), fill = Season))
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Performing a  Test of Independence
Compute the test statistic

In this example, we expect the orders to be distributed evenly across season and flower type

χ2

χ2 =
r

∑
i=1

c

∑
j=1

(Oij−Eij)2

Eij

Eij =
Ri ⋅ Cj

n
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Compute the test statistic

Lilies Roses Tulips Sum

Spring 186 232 185 603

Summer 172 228 192 592

Autumn 168 219 164 551

Winter 183 246 173 602

Sum 709 925 714 2348

Season Lilies Roses Tulips

Spring

Summer

Autumn

Winter

Performing a  Test of Independenceχ2

Eij =
Ri ⋅ Cj

n

(603 ∗ 709)

2348

(603 ∗ 925)

2348

(603 ∗ 714)

2348

(592 ∗ 709)

2348

(592 ∗ 925)

2348

(592 ∗ 714)

2348

(551 ∗ 709)

2348

(551 ∗ 925)

2348

(551 ∗ 714)

2348

(602 ∗ 709)

2348

(602 ∗ 925)

2348

(602 ∗ 714)

2348
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Observed Counts

Lilies Roses Tulips

Spring 186 232 185

Summer 172 228 192

Autumn 168 219 164

Winter 183 246 173

Expected Counts

Seasons Lilies Roses Tulips

Spring 182.08 237.55 183.37

Summer 178.76 233.22 180.02

Autumn 166.38 217.07 167.55

Winter 181.78 237.16 183.06

Performing a  Test of Independence
Compute the test statistic

χ2

χ2 =
r

∑
i=1

c

∑
j=1

(Oij−Eij)2

Eij
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Observed Counts

Lilies Roses Tulips

Spring 186 232 185

Summer 172 228 192

Expected Counts

Seasons Lilies Roses Tulips

Spring 182.08 237.55 183.37

Summer 178.76 233.22 180.02

Performing a  Test of Independence
Compute the test statistic

Difference

Seasons Lilies Roses Tulips

Spring 3.92 -5.55 1.63

Summer -6.76 -5.22 11.98

χ2

χ2 =
r

∑
i=1

c

∑
j=1

(Oij−Eij)
2

Eij
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Difference

Seasons Lilies Roses Tulips

Spring 3.92 -5.55 1.63

Summer -6.76 -5.22 11.98

Autumn 1.62 1.93 -3.55

Winter 1.22 8.84 -10.06

Squared

Seasons Lilies Roses Tulips

Spring 15.36 30.84 2.67

Summer 45.69 27.25 143.51

Autumn 2.63 3.73 12.62

Winter 1.49 78.16 101.23

Performing a  Test of Independence
Compute the test statistic

χ2

χ2 =
r

∑
i=1

c

∑
j=1

(Oij−Eij)2

Eij
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Squared

Seasons Lilies Roses Tulips

Spring 15.36 30.84 2.67

Summer 45.69 27.25 143.51

Expected

Seasons Lilies Roses Tulips

Spring 182.08 237.55 183.37

Summer 178.76 233.22 180.02

Performing a  Test of Independence
Compute the test statistic

Squared over Expected

Seasons Lilies Roses Tulips

Spring 0.08 0.13 0.01

Summer 0.26 0.12 0.80

χ2

χ2 =
r

∑
i=1

c

∑
j=1

(Oij−Eij)
2

Eij
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Squared over Expected

Seasons Lilies Roses Tulips

Spring 0.08 0.13 0.01

Summer 0.26 0.12 0.80

Autumn 0.02 0.02 0.08

Winter 0.01 0.33 0.55

Sum of Squared over Expected - 

0.08 + 0.26 + 0.02 + ... + 0.08 + 0.55 =

## [1] 2.397417

Performing a  Test of Independence
Compute the test statistic

χ2

χ2 =
r

∑
i=1

c

∑
j=1

(Oij−Eij)2

Eij

χ2
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where:

 = number of levels within Variable 1
 = number of levels within Variable 2

so, in our example:

 = number of levels within Season
 = number of levels within Flowers

Performing a  Test of Independence
Find the test statistic on the distribution

χ2

df = (r − 1)(c − 1)

c

r

c

r

df  =  (4 − 1)(3 − 1)  =  (3)(2)  =  6
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What proportion of the plot falls in the shaded area?

Performing a  Test of Independence
Compute the probability of obtaining a  statistic at least as extreme as the observed one, if  is true

χ2

χ2 H0
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What proportion of the plot falls in the shaded area?

pchisq(x2_stat_toi, 
       df = 6, 
       lower.tail = F)

## [1] 0.8797671

The probability that we would have a  value as
extreme as 2.4 if  was true is 0.88

Performing a  Test of Independence
Compute the probability of obtaining a  statistic at least as extreme as the observed one, if  is true

χ2

χ2 H0

χ2

H0
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Performing a  Test of Independence in R
TOItest <- chisq.test(seasonDat$Season, seasonDat$Flowers)
TOItest

## 
##     Pearson's Chi-squared test
## 
## data:  seasonDat$Season and seasonDat$Flowers
## X-squared = 2.3974, df = 6, p-value = 0.8798

χ2
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In R

TOItest$residuals

##                 seasonDat$Flowers
## seasonDat$Season      Lilies       Roses      Tulips
##           Spring  0.29040508 -0.36030121  0.12071137
##           Summer -0.50559019 -0.34179680  0.89285276
##           Autumn  0.12563386  0.13115144 -0.27447085
##           Winter  0.09053276  0.57407330 -0.74363023

By Hand

You need to calculate separately by cell

Example of number of Lilies sold in Spring

Exploring our Results Further
We can compute standardized residuals for the Test of Independence

Oij−Eij

√Eij

= = 0.291
Oij−Eij

√Eij

186−182.08

√182.08
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Write Up
A  test of independence was performed to examine whether the type of flower sold was independent of season. There was no
significant association between these variables . Therefore, using an , we failed to
reject the null hypothesis.

χ2

(χ2(6,n = 2348) = 2.40, p = .880) α = .05
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Questions?
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Effect Size
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Effect Sizes
There are 3 possibilities:

Phi coefficient 
Cramer's V 
Odds Ratios 

You will learn more about odds ratios in DAPR2, so we will focus on Phi and Cramer's V

(ϕ)
(V )

(OR)

55 / 61



Phi Coefficient

where

 = total number of observations

Should only be used when you have a 2x2 contingency table (2 categorical variables with 2 levels each)

Common 'cut-offs' for -scores:

Verbal label Magnitude of 

Small effect 0.1

Medium effect 0.3

Large effect 0.5

ϕ = √ χ2

n

n

ϕ

ϕ
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Phi Coefficient in R
library(effectsize)
phi(TOItest)
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Cramer's  is interpreted based on 

Cramer's  must lie between 0 and 1

0 = complete independence, 1 = complete
dependence

small medium large

1 .10 .30 .50

2 .07 .21 .35

3 .06 .17 .29

4 .05 .15 .25

5 .04 .13 .22

Cramer's V

where

 = total number of observations
 = 

Can be used when you aren't working with a 2x2 contingency table

Interpretation

V = √ χ2

n⋅ df ∗

n

df ∗ min(r − 1, c − 1)

V df ∗

V

df ∗

58 / 61



Not Bias-Corrected

library(effectsize)
#matches by-hand calc
#overwriting auto-adjustment: adjust = FALSE 
cramers_v(cont_table, adjust = FALSE)

## Cramer's V |       95% CI
## -------------------------
## 0.02       | [0.00, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].

By hand

Bias-Corrected (Automatically Applied)

library(effectsize)
#good for small samples & large tables
#will not match by-hand calc
cramers_v(cont_table, adjust = TRUE) #default

## Cramer's V (adj.) |       95% CI
## --------------------------------
## 0.00              | [0.00, 1.00]
## 
## - One-sided CIs: upper bound fixed at [1.00].

Calculate via cramers_v() function from effectsize
package in R - do not calculate by hand

Cramer's V
In R

V = √ = √ = 0.023
χ2

n⋅ df ∗

2.40
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Summary
Today we have covered:

The  distribution and how it compares to the  distribution
The assumptions of  tests
How the  Goodness of Fit test and the  Test of Independence are different
How to calculate both types of  values
Standardized residuals and how they relate to your  results
Measures of effect size you may use with  tests

χ2 t

χ2

χ2 χ2

χ2

χ2

χ2
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Tasks
Attend both lectures

Attend your lab and work on the assessed report with
your group (due by 12 noon on Friday 28th of March
2025)

Complete the weekly quiz

Opened Monday at 9am
Closes Sunday at 5pm

Support
Office Hours: for one-to-one support on course
materials or assessments
(see LEARN > Course information > Course contacts)

Piazza: help each other on this peer-to-peer discussion
forum

Student Adviser: for general support while you are at
university
(find your student adviser on MyEd/Euclid)

This Week
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