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Learning Objectives
Understand when to use an paired samples -test
Understand the null hypothesis for an paired samples -test
Understand how to calculate the test statistic
Know how to conduct the test in R

t
t
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Topics for Today
Conceptual background and overview of the paired samples -test
Paired samples -test example
Inferential tests for the paired samples -test
Assumptions and effect size

t
t

t
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T-Test: Paired Samples
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Paired Samples T-Test: Purpose
The paired samples -test is used when we want to test the difference in mean scores for a sample comprising matched (or
naturally related) pairs

Examples:

Pre-test and post-test score with an intervention administered between the time points
A participant experiences both experimental conditions (e.g., caffeine and placebo)

t
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t-statistic

Where

 = mean of the individual difference scores 
where 

 is the hypothesised population mean difference in the null hypothesis (which is usually assumed to be 0)
 = standard error of mean difference 

 = standard deviation of the difference scores 
 = sample size = number of matched pairs

Sampling distribution is a -distribution with  degrees of freedom

Note, this is just essentially a one sample -test on the difference scores

t = where SEd̄ =
¯̄̄
d − μd0

SEd̄

sd

√n

d̄ (di)
di = xi1 − xi2

μd0

SEd̄ (di)
sd (di)
n

t n − 1

t
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Two-tailed

One-tailed

Hypotheses

H0 : μd = μd0
vs H1 : μd ≠ μd0

H0 : μd = μd0
vs H1 : μd < μd0

H0 : μd = μd0
vs H1 : μd > μd0

H0 : μd − μd0
= 0 vs H1 : μd − μd0

≠ 0

H0 : μd − μd0
= 0 vs H1 : μd − μd0

< 0

H0 : μd − μd0
= 0 vs H1 : μd − μd0

> 0
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Questions?
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Example
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Time Management & Stress
I want to assess whether a time-management course influenced levels of exam stress in students

I ask 50 students to take a self-report stress measure during their winter exams

At the beginning of semester 2 they take a time management course

I then assess their self-report stress in the summer exam block

Let's assume for the sake of this example that I have been able to control the volume and difficulty of the exams the
students take in each block
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Data
## # A tibble: 100 × 3
##    ID    stress time 
##    <chr>  <dbl> <fct>
##  1 ID1       14 t1   
##  2 ID2        7 t1   
##  3 ID3        8 t1   
##  4 ID4        8 t1   
##  5 ID5        7 t1   
##  6 ID6        7 t1   
##  7 ID7       11 t1   
##  8 ID8        9 t1   
##  9 ID9       10 t1   
## 10 ID10      14 t1   
## # ℹ 90 more rows
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Hypotheses
I want to be quite sure the intervention has worked and stress levels are different pre- and post- time management course

I elect to use a two-tailed test with alpha  of .01

I specify the following hypotheses:

(α)

H0 : μd = μd0

H1 : μd ≠ μd0
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Calculation
Steps in my calculations:

Calculate the difference scores for individuals 
Calculate the mean of the difference scores 
Calculate the  of the difference scores
Check I know my 
Calculate the standard error of mean difference 

di
d̄

sd
n

(SEd̄ )
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Data Organisation
Our data is currently in what is referred to as long format

All the scores are in one column, with two entries per participant

To calculate the  values, we will convert this to wide format

Where there are two columns representing the score at time 1 and time 2
And a single row per person

di
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Data Organisation
exam_wide <- exam |>
  pivot_wider(id_cols =  ID, 
              names_from = time, 
              values_from = stress)
head(exam_wide)

## # A tibble: 6 × 3
##   ID       t1    t2
##   <chr> <dbl> <dbl>
## 1 ID1      14     7
## 2 ID2       7     7
## 3 ID3       8     9
## 4 ID4       8    12
## 5 ID5       7    10
## 6 ID6       7     9
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Calculation
exam_wide |>  
  mutate(dif = t1 - t2) |>
  summarise(
    dbar = mean(dif),
    Sd = sd(dif),
    mu_d0 = 0,
    n = n()) |>
  mutate(
    SEd = (Sd /sqrt(n)),
    t = ((dbar-mu_d0)/SEd)
    ) |>
  kable(digits = 2) |>
  kable_styling(full_width = FALSE)

dbar Sd mu_d0 n SEd t

2.1 3.55 0 50 0.5 4.19
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Calculation
dbar Sd mu_d0 n SEd t

2.1 3.55 0 50 0.5 4.19

So in our example 

Note: When doing hand calculations there might be a small amount of rounding error when we compare to  calculated in R

t = = = = 4.20
d̄ − μd0

SEd̄

2.1 − 0
3.55
√50

2.1

0.5

t = 4.20

t
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Is our Test Significant?
We have all the pieces we need:

Hypothesis to test (two-tailed)

Now all we need is the critical value from the associated -distribution in order to make our decision

t = 4.19
df = n − 1 = 50 − 1 = 49

α = .01

t
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tibble(
  LowerCrit = round(qt(0.005, 49),2),
  UpperCrit = round(qt(0.995, 49),2),
  Exactp = round(2*(1-pt(calc[[6]], 49)),5)
)

## # A tibble: 1 × 3
##   LowerCrit UpperCrit  Exactp
##       <dbl>     <dbl>   <dbl>
## 1     -2.68      2.68 0.00012

Is our Test Significant?
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Is our Test Significant?
The critical value is 2.68, and our -statistic (4.19) is larger than this

We found that , which is 

Thus, we reject the null hypothesis

t

p < .001 < α
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Paired Samples T-Test in R
# must have two numeric columns
res_wide <- t.test(exam_wide$t1, exam_wide$t2, 
       paired = TRUE, 
       mu = 0,
       alternative = "two.sided",
       conf.level = 0.99)
res_wide

## 
##     Paired t-test
## 
## data:  exam_wide$t1 and exam_wide$t2
## t = 4.1864, df = 49, p-value = 0.0001174
## alternative hypothesis: true mean difference is not equal to 0
## 99 percent confidence interval:
##  0.7556557 3.4443443
## sample estimates:
## mean difference 
##             2.1
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Write Up
A paired samples -test was conducted in order to determine a if a statistically significant  mean difference in self-
reported stress was present, pre- and post-time management intervention in a sample of 50 undergraduate students. The pre-
intervention mean score was higher  than the post intervention score . The
difference was statistically significant . We are 99% confident that post-intervention
stress scores were between 0.76 and 3.44 points lower than pre-intervention stress scores. Thus, we reject the null hypothesis of
no difference.

t (α = .01)

(M = 9.72,SD = 2.19) (M = 7.62,SD = 2.55)
(t(49) = 4.19, p <. 001, two − tailed)
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Questions?

24 / 43



Data Requirements & Assumptions
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Data Requirements
A numeric variable
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Assumption Checks Summary
Description One-Sample t-test Independent Samples t-test Paired Samples t-test

Normality
Numeric variable (or difference) is
normally distributed OR sample size is
sufficiently large.

Yes (variable).
Sample size
guideline: n ≥ 30

Yes (variable in each group).
Sample size guideline: n1 ≥ 30
and n2 ≥ 30

Yes (difference). Sample
size guideline: number of
pairs ≥ 30

Tests: Descriptive Statistics and Plots; QQ-
Plot; Shapiro-Wilks Test

Independence Observations are sampled
independently.

Yes Yes (within and across groups) Yes (across pairs)

Tests: None. Design issue.

Homogeneity of
variance

Population standard deviation is the
same in both groups.

NA Yes* NA

Tests: F-test

Matched Pairs in
data

For paired sample, each observation
must have matched pair.

NA NA Yes

Tests: None. Data structure issue.

* Welch t-test is available if this is not met
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Data Requirements & Assumptions: How to
Check/Test

DV is numeric

The dependent variable should be measured on a interval/ratio/integer scale

Normality of the difference scores 

Can be checked with descriptive statistics, visually with plots, and with a Shapiro-Wilks test for each group separately

Independence of observations across pairs

More of a study design issue, and cannot directly test

Data are matched pairs

More of a study design issue, and cannot directly test

(di)
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Adding the Difference Scores
Our assumptions concern the difference scores
We showed these earlier in our calculations
Here we will add them to exam_wide for ease

exam_wide <- exam_wide |>  
  mutate(
    dif = t1 - t2)
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Normality: Skew
Skew is a descriptive statistic informing us of both the direction and magnitude of asymmetry

Below are some rough guidelines on how to interpret skew
No strict cuts for skew - these are loose guidelines

Verbal label Magnitude of skew in absolute value

Generally not problematic | Skew | < 1

Slight concern 1 > | Skew | < 2

Investigate impact | Skew | > 2
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Skew in R
library(psych)
exam_wide |>
  summarise(
    skew = round(skew(dif), 2)
  )

## # A tibble: 1 × 1
##    skew
##   <dbl>
## 1  0.18

Skew is low (< 1), so we would conclude that it is not problematic

31 / 43



Normality: Visual Assessment
We can visually assess normality by plotting the distribution of the difference scores 

Histograms

The count (or frequency) of data points that fall within specified intervals/bins

Density Plots

The probability density (or proportion of values) of data points at each value of the observed variable

QQ-Plots (Quantile-Quantile plot):

Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution)
Quantile = the percent of points falling below a given value
For a normality check, we can compare our own data to data drawn from a normal distribution

(di)
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ggplot(exam_wide, aes(x=dif)) +
  geom_histogram() + 
  labs(title = "Histogram")

ggplot(exam_wide, aes(x=dif)) +
  geom_density() + 
  labs(title = "Density")

Histogram & Density Plots in R
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ggplot(exam_wide, aes(sample = dif)) +
  geom_qq() +
  geom_qq_line() +
  labs(title="QQ-plot",
       x = "Theoretical quantiles",
       y = "Sample quantiles")

QQ-Plots in R
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Normality: Shapiro-Wilks Test
Shapiro-Wilks test:

Checks properties of the observed data against properties we would expected from normally distributed data.
Statistical test of normality.

: data = a normal distribution.
-value  = reject the null, data are not normal.

Sensitive to  as all -values will be.
In very large , normality should also be checked with QQ-plots alongside statistical test.

H0

p < α

n p

n
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Shapiro-Wilks Test in R
shapiro.test(exam_wide$dif)

## 
##     Shapiro-Wilk normality test
## 
## data:  exam_wide$dif
## W = 0.97142, p-value = 0.264

Fail to reject the null since  = .264, which is >  (.05)

Normality of the difference scores is met

W = 0.97, p = .264

p α
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Questions?
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Effect Size
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Cohen's D: Paired T-Test
Paired samples -test:

where
 = mean of the difference scores 

 = the hypothesised population difference in means in the null hypothesis
 = standard deviation of the difference scores 

In our example:
 = 2.1

 = 0
 = 3.55

t

D =
d̄ − μd0

sd

d̄ (di)
μd0

sd (di)

d̄
μd0

sd

D = = 0.59
2.1 − 0

3.55
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Cohen's D: Paired Samples T-Test in R
library(effectsize)
cohens_d(exam_wide$t1, exam_wide$t2, 
       paired = TRUE, 
       mu = 0,
       alternative = "two.sided",
       ci = 0.99)

## Cohen's d |       99% CI
## ------------------------
## 0.59      | [0.19, 0.99]
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Write Up: Data Requirements, Assumptions, &
Effect Size
The DV of our study, Stress, was measured on a continuous scale. Independence of observations can be assumed based on the
study design. Data comprised matched pairs of observations as participants were assessed twice, pre- and post- time
management course. The assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as well as
statistically via a Shapiro-Wilks test. The QQplot did not show much deviation from the diagonal line, and the Shapiro-Wilks test
suggested that the difference scores were normally distributed . This was inline with the histogram and
density plots, which suggested that the difference in scores between the two assessment times was normally distributed (and
where ). The size of the effect was found to be medium-large .

(W = 0.97, p = .264)

skew < 1 (D = 0.59 [0.19, 0.99])
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Summary
Today we have covered:

Basic structure of the paired samples -test
Calculations
Interpretation
Assumption checks
Effect size measures

t
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Tasks
Attend both lectures

Attend your lab and work on the assessed report with
your group (due by 12 noon on Friday 28th of March
2025)

Complete the weekly quiz

Opened Monday at 9am
Closes Sunday at 5pm

Support
Office Hours: for one-to-one support on course
materials or assessments
(see LEARN > Course information > Course contacts)

Piazza: help each other on this peer-to-peer discussion
forum

Student Adviser: for general support while you are at
university
(find your student adviser on MyEd/Euclid)

This Week
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