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Course Overview

Describing categorical data

Describing relationships

Probability

Probability theory

Foundations of
inference

Confidence intervals

Hypothesis testing (p-values)

Hypothesis testing (critical
values)

Hypothesis testing and
confidence intervals

Errors, power, effect size,
assumptions

Random variables
(discrete)

Sampling

Common
hypothesis tests

One sample t-test

Independent samples t-test

Paired samples t-test

Correlation
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Learning Objectives

Understand when to use an independent samples t-test
Understand the null hypothesis for an independent sample t-test
Understand how to calculate the test statistic

Know how to conduct the testin R
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Topics for Today

Conceptual background and overview of the independent samples t-test
Independent samples t-test example

Inferential tests for the independent samples t-test

Assumptions and effect size
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T-Test: Independent Samples




Independent Samples T-Test: Purpose

e Theindependent t-test is used when we want to test the difference in mean between two measured groups.
e Examples:

o Treatment versus control group in an experimental study
o Married versus not married
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t-statistic

(Z1 — Z2) — do

)

T1—I2)
e Where

o Z1 and Ty are the sample means in each group
o dp is the hypothesised population difference in means in the null hypothesis (u1 — p2)
o SE (g, _z,) is standard error of the difference

e Sampling distribution is a t-distribution with n — 2 degrees of freedom, where n=n; + ns
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Standard Error Difference

e First calculate the pooled standard deviation

e Then use this to calculate the SE of the difference

1 1
SE(z,—z,) = Sp n + o
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Hypotheses

Two-tailed

H():,LL1:,U,2 VS

One-tailed

Hy:pi=p2 s

H():,ulzluz VS

Hy @y # po

Hl:,u1<,u2

H1:,U,1>M2

Ho:pi—p2=0

Ho:pi—p2=0

Ho:pr—p2=0

VS

VS

VS

Hy:pp—p2 #0

Hy:pp—pu <0

Hi:pg—pu>0
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Questions?
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Example



Stereotype Threat

e Example taken from Howell, D.C. (2010). Statistical Methods for Psychology, 7th Edition. Belmont, CA: Wadsworth Cengage
Learning.

e Data from Aronson, Lustina , Good, Keough, Steele and Brown (1998). Experiment on stereotype threat.

o Two independent groups college students (n=12 control; n=11 threat condition)
o Both samples excel in maths
o Threat group told certain students usually do better in the test
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Data

## # A tibble: 23 x 2
Group Score

##
##
##
##
##
##
##
##
##
##
##
## 10

O oo ~NO UL b~ WN B

<fct>

Threat
Threat
Threat
Threat
Threat
Threat
Threat
Threat
Threat
Threat

<db1l>

AN OO OGO 01N

3

## # 1 13 more rows
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Hypotheses

e My hypothesis is that the threat group will perform worse than the control group.

e |elect to use a one-tailed test with alpha () of .05, and specify the hypotheses as:

Hy : p1 = po
Hy:py < po
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Visualizing Data

e We spoke earlier in the course about the importance of visualizing our data
e Here, we want to show the mean and distribution of scores by group

e Sowewanta...
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Visualizing Data

ggplot(data = threat, 1254
aes(x = Group, y = Score, fill = Group)
geom_boxplot() +
geom_jitter(width = 0.1) 10.01
‘ >
o Group
3 751 * B3 Threat
@ B Control
5.0
2.51 . .
Threat Control
Group
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Calculation

(Z1 — Z2) — do

t =
SE,

T1—I2)

e Stepsto calculate t:
o Calculate the sample mean in both groups Z; and Z»
Calculate the pooled SD (sp)
Check | know myn
Calculate the standard error (SE)

O O O
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Calculation

threat |[>
group_by(Group) |[>
summarise (
Mean = mean(Score),
SD = sd(Score),
n =n()
) >
kable(digits = 2) |>
kable_styling(full_width = FALSE)

Group Mean SD n
Threat  5.27 1.27 11
Control 9.58 1.51 12
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Calculation

Group Mean SD n
Threat  5.27 1.27 11
Control 9.58 1.51 12

e (Calculate pooled standard deviation:

\/(n1 —1)s? + (ng — 1)s2 \/(11 —1)-1.277 + (12 — 1) - 1.51% \/10 .1.27° + 11 - 1.51° 41.21
sp _— _— —

— = 1.401
ny +ng — 2 11+12 -2 11 +12 -2 21

e Calculate the standard error:

! T 1
SE@ ) = Sp|—+-— = 140l /—+— = 1401-0417 = 0584
(#1-22) Ay g 11 12
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Calculation

Steps in my calculations:

o Calculate the sample mean in both groups - Threat (Z; = 5.27), Control (Z2 = 9.58)
o Calculate the pooled SD (s, = 1.401)

o Check | know my n - Threat (n; = 11) and Control (ny = 12) -n = 23

o Calculate the standard error (SE = 0.584).

Use all this to calculate ¢

(Z1 — %) —0 527 —9.58
SEG-z) ~ 0.584

t = = —7.38

Soinourexamplet = —7.38

Note: When doing hand calculations there might be a small amount of rounding error when we compare to ¢ calculated in R
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Is our Test Significant?

e We have all the pieces we need:

o Degrees of freedom=n —2 = (12+4+11) —2=23 —2 =21
o We have our t-statistic (-7.38)

o Hypothesis to test (one-tailed)

o o level (.05)

e Now all we need is the critical value from the associated t-distribution in order to make our decision
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Is our Test Significant?

0.4
0.31
0.21
0.11

0.0 1

t-distribution (df=21); t-statistic (-7.38; red line)

tibble(

)

##
##
##
##

LowerCrit = round(qt(0.05, 21),2),
Exactp = 1-pt(7.3817, 21)

# A tibble: 1 x 2

LowerCrit Exactp
<dbl> <dbl>
1 -1.72 0.000000146
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Is our Test Significant?

e The critical value is -1.72, and our t-statistic (-7.38) is larger than this
e We foundthatp < .001, whichis <

e Thus, we reject the null hypothesis
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Independent Samples T-Test in R

res <- t.test(threat$Score ~ threat$Group, To get missing Cl - need to do a two-sided test
alternative = "less",
mu = 0, t.test(threat$Score ~ threat$Group,
var.equal = TRUE, alternative = "two.sided",
conf.level = 0.95) mu = 0,

res var.equal = TRUE,

conf.level = 0.95)

##

# Two Sample t-test

##

## threat$Score by threat$Group

#i -7.3817, df = 21, p-value = 1.458e-07

## alternative hypothesis: true difference in means between group Threat and group Control is less than 0

## 95 percent confidence interval:

## -Inf -3.305768

## sample estimates:

## mean 1in group Threat mean in group Control

## 5.272727 9.583333



Write Up

An independent samples ¢-test was used to determine whether the average maths score of the stereotype threat group (n = 11)
was significantly lower (a = .05) than the control group (n = 12). There was a significant difference in test score between the
control (M = 9.58, SD = 1.51) and threat (M = 5.27, SD = 1.27) groups, where the scores were significantly lower in the
threat group (¢(21) = —7.38,p < .001, one — tailed). Therefore, we can reject the null hypothesis. The direction of difference
supports our directional hypothesis and indicates that the threat group performed more poorly than the control group.
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Questions?
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Data Requirements & Assumptions




Data Requirements

e A numeric variable

e Abinary variable denoting groups
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Assumption Checks Summary

Description

Numeric variable (or difference) is
Normality normally distributed OR sample size is
sufficiently large.

Descriptive Statistics and Plots; QQ-

Tests:
Plot; Shapiro-Wilks Test
Observations are sampled
Independence .
independently.
Tests: None. Design issue.
Homogeneity of  Population standard deviation is the
variance same in both groups.
Tests: F-test
Matched Pairsin  For paired sample, each observation
data must have matched pair.
Tests: None. Data structure issue.

" Welch t-test is available if this is not met

One-Sample t-test

Yes (variable).
Sample size
guideline: n 230

Yes

NA

NA

Independent Samples t-test

Yes (variable in each group).
Sample size guideline: n1 = 30
and n2=30

Yes (within and across groups)

Yes

NA

Paired Samples t-test

Yes (difference). Sample
size guideline: number of
pairs = 30

Yes (across pairs)

NA

Yes
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Data Requirements & Assumptions: How to
Check/Test

DV is numeric

o The dependent variable should be measured on a interval/ratio/integer scale

Normality within groups

o Can be checked with descriptive statistics, visually with plots, and with a Shapiro-Wilks test for each group separately

Independence of observations within and across groups

o More of a study design issue, and cannot directly test
o Need to make sure that each individual only belongs to one group, and only has one observation in the group they
belong to

Homogeneity of variance across groups
o Can be checked using an F'-test
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Normality: Skew

e Skew is a descriptive statistic informing us of both the direction and magnitude of asymmetry
o Below are some rough guidelines on how to interpret skew
o No strict cuts for skew - these are loose guidelines

Verbal label Magnitude of skew in absolute value
Generally not problematic | Skew |<1
Slight concern 1>|Skew |<2

Investigate impact | Skew |>2

31/49



Skew in R

library(psych)
threat |[>

##
##
##
##
##

group_by(Group) |[>

summarise (
skew = round(skew(Score),2)

# A tibble: 2 x 2
Group skew
<fct> <dbl>

1 Threat -0.2

2 Control -0.07
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Normality: Visual Assessment

e We can visually assess normality by plotting the distribution of our outcome variable in both groups separately:
o Histograms
= The count (or frequency) of data points that fall within specified intervals/bins
o Density Plots
= The probability density (or proportion of values) of data points at each value of the observed variable
o QQ-Plots (Quantile-Quantile plot):

m Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution)
= Quantile = the percent of points falling below a given value
= For a normality check, we can compare our own data to data drawn from a normal distribution
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Histogram & Density Plots in R

ggplot(data = threat, aes(x=Score)) + ggplot(data = threat, aes(x=Score)) +
geom_histogram() + geom_density() +
facet_wrap(~ Group) +

facet_wrap(~ Group) +
labs(title = "Histogram") labs(title = "Density")

Density

Histogram
Threat | | Control Threat | |

| |
1- ‘
0 75 100

Control

0.2
0.11
‘ 00-
0 125

e No concernsin histogram or density plots for either group
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QQ-PlotsinR

ggplot(data = threat, QQ-plot
le = S 1 =G )) + The closer the data fit to the line the more normally
aes(sample = Score, colour = Group distributed they are
geom_qq() +
geom_qq_Lline() +
labs(title="QQ-plot",
x = "Theoretical quantiles", 3 100
y = "Sample quantiles") E Group
g 7.5 — Threat
a - Control
5
w
5.01

R 0 1
Theoretical quantiles

e This looks reasonable in both groups
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Normality: Shapiro-Wilks Test

e Shapiro-Wilks test:
o Checks properties of the observed data against properties we would expected from normally distributed data.
o Statistical test of normality.
o Hj:data=anormaldistribution.
o p-value < a =reject the null, data are not normal.
m Sensitive to n as all p-values will be.
= |nvery large n, normality should also be checked with QQ-plots alongside statistical test.
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Shapiro-Wilks Testin R

threat |[> thr <- threat |>
filter(Group == "Control") |> filter(Group == "Threat") |>
pull(Score) |> select(Score)
shapiro.test() shapiro.test(thr$Score)
## ##
#H# Shapiro-Wilk normality test #H Shapiro-Wilk normality test
## ##
## data: pull(filter(threat, Group == "Control"), Scé#edata: thr$Score
## W = 0.95538, p-value = 0.7164 ## W = 0.93979, p-value = 0.518
W =0.96,p = .716 W =0.94,p = .518
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Homogeneity of Variance: F-Test

e The F'-testis a test that compares the variances of two groups
o This testis preferable for t-test
e Hypotheses:

o Hy: Population variances are equal
o Hj: Population variances are not equal

e Interpretation:

o If p-value < a, then reject the null as the variances differ across groups
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F-testinR

var.test(threat$Score ~ threat$Group, ratio = 1)

##
##
##
##
##
##
##
##
##
##
##

F test to compare two variances

data: threat$Score by threat$Group
F = 0.71438, num df = 10, denom df = 11, p-value = 0.6038
alternative hypothesis: true ratio of variances 1is not equal to 1
95 percent confidence interval:
0.2026227 2.6181459
sample estimates:
ratio of variances
0.7143813

Why ratio = 1?

Hy : Jf = ag which is equivalent to % =1
2
2
Hy: o} +# 0. whichisequivalent to % £ 1
2
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Violation of Homogeneity of Variance

¢ |f the variances differ, we can use a Welch test.
e Conceptually very similar, but we do not use a pooled standard deviation.

o Assuch our estimate of the SE of the difference changes
o As do our degrees of freedom
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Welch Test

e Test statistic:

~ (Z1—Z2) — o
SE,

T1—T2)

e SE calculation:

ni no

e Degrees of freedom:
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Welch Testin R

t.test(threat$Score ~ threat$Group,
alternative = "less",
mu = 0,
var.equal = FALSE, #default, only here to highlight difference
conf.level = 0.95)

H#

#i Welch Two Sample t-test

##

## data: threat$Score by threat$Group

## t = -7.4379, df = 20.878, p-value = 1.346e-07
## alternative hypothesis: true difference in means between group Threat and group Control is less than 0
## 95 percent confidence 1interval:

#H# -Inf -3.313093

## sample estimates:

## mean 1in group Threat mean in group Control
## 5.272727 9.583333
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Questions?
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Effect Size



Cohen's D: Independent Samples T-Test

If you do have equality of variances: If you do not have equality of variances:
D— (Z1 — Z2) — do e Calculatevia cohens_d () function from
a 8p effectsize packagein R - do not calculate by hand

® T1=meangroupl

® To=mean group 2

e g =the hypothesised population difference in means in
the null hypothesis (1 — u2)

e s, =pooled standard deviation

Recall the common "cut-offs" for D-scores:

Verbal label Magnitude of D in absolute value
Small (or weak) < 0.20
Medium (or moderate) ~ 0.50

Large (or strong) > 0.80 45 / 49




Cohen's D: Independent Samples T-Test in R

##
##
##
##
##
##

library(effectsize)
cohens_d(threat$Score ~ threat$Group,
mu = 0,
alternative = "less",
var.equal = TRUE,
ci = 0.95)
Cohen's d | 95% CI
-3.08 | [-Inf, -2.02]
- Estimated using pooled SD.
- One-sided CIs: lower bound fixed at [-Inf].

To get missing Cl - need to do a two-sided test:

cohens_d(threat$Score ~ threat$Group,

alternative = "two.sided",
mu = 0,
var.equal = TRUE,
ci = 0.95)
## Cohen's d | 95% CI
B —mmmm
## —-3.08 | [-4.30, -1.83]
##

## - Estimated using pooled SD.
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Write Up: Data Requirements, Assumptions, &
Effect Size

The DV of our study, Score, was measured on a continuous scale, and data were independent (participants belonged to one of two
groups - Control or Threat). The assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as
well as statistically via a Shapiro-Wilks test. The QQplots did not show much deviation from the diagonal line in either group, and
the Shapiro-Wilks test for both the Control (W = 0.96, p = .716) and Threat (W = 0.94, p = .518) conditions suggested that
the samples came from a population that was normally distributed. This was inline with the histogram and density plots for each
group, which suggested that Score was normally distributed (and where skew < 1). Based on the results of our F'-test, there was
no significant difference between the two population variances (F'(10,11) = 0.71, p = .604). The size of the effect was found to
be large D = —3.08 [—4.30, —2.02].
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Summary

e Today we have covered:
o Basic structure of the independent-sample t-test
Calculations
Interpretation
Assumption checks

(e}
(e}
(e}
o Effect size measures
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This Week

.
Tasks Support

e Attend both lectures e Office Hours: for one-to-one support on course
materials or assessments

® Attend yOUF lab and WOFk on the assessed report W|th (See LEARN > Course information > Course Contacts)

your group (due by 12 noon on Friday 28th of March

2025) e Piazza: help each other on this peer-to-peer discussion

forum
e Complete the weekly quiz

e Student Adviser: for general support while you are at
university
(find your student adviser on MyEd/Euclid)

o Opened Monday at 9am
o Closes Sunday at 5pm
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