T-Test: One Sample

Data Analysis for Psychology in R 1 Semester 2 Week 6

Dr Emma Waterston

Department of Psychology The University of Edinburgh

Course Overview

	Research design and data	
	Describing categorical data	
Exploratory Data Analysis	Describing continuous data	
	Describing relationships	
	Functions	
	Probability theory	
	Probability rules	
Probability	Random variables (discrete)	
	Random variables (continuous)	
	Sampling	

	Confidence intervals		
	Hypothesis testing (p-values)		
Foundations of inference	Hypothesis testing (critical		
	values)		
	Hypothesis testing and		
	confidence intervals		
	Errors, power, effect size,		
	assumptions		
	One sample t-test		
C	Independent samples t-test		
Common hypothesis tests	Paired samples t-test		
hypothesis tests	Chi-square tests		
	Correlation		

Learning Objectives

- Understand when to use a one sample *t*-test
- Understand the null hypothesis for a one sample *t*-test
- Understand how to calculate the test statistic
- Know how to conduct the test in R

Topics for Today

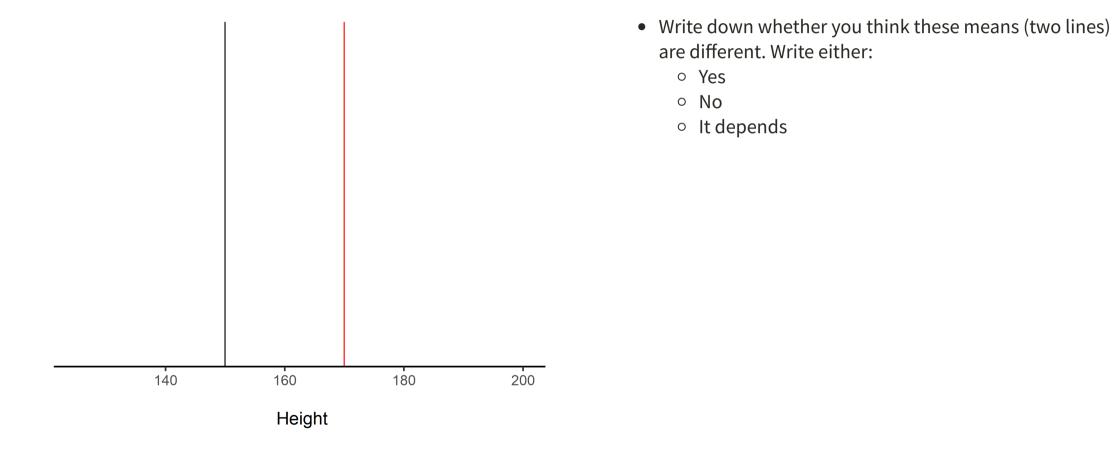
- Introduce the three types of *t*-test
- One sample *t*-test example
- Inferential tests for the one sample *t*-test
- Assumptions and effect size

Introduction

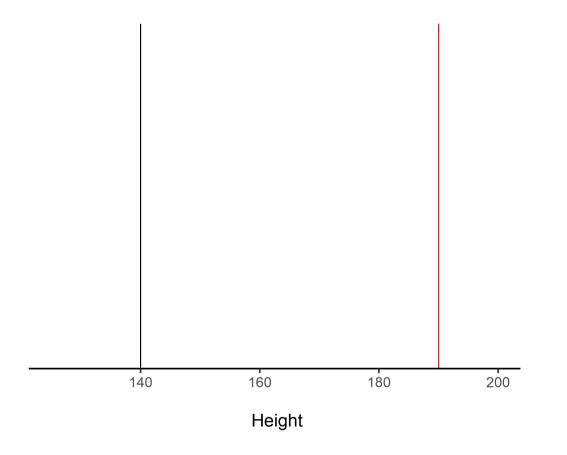
T-Test: Purpose

- *t*-tests (generally) concern testing the difference between two means
 - Another way to state this is that the scores of two groups being tested are from the sample underlying population distribution
- Types of *t*-test:
 - One sample: compare the mean in a sample to a known mean
 - Independent samples: compare the means of two independent samples
 - Paired samples: compare the mean scores from a single sample comprising matched (or naturally related) pairs

Are These Means Different?



What About These?

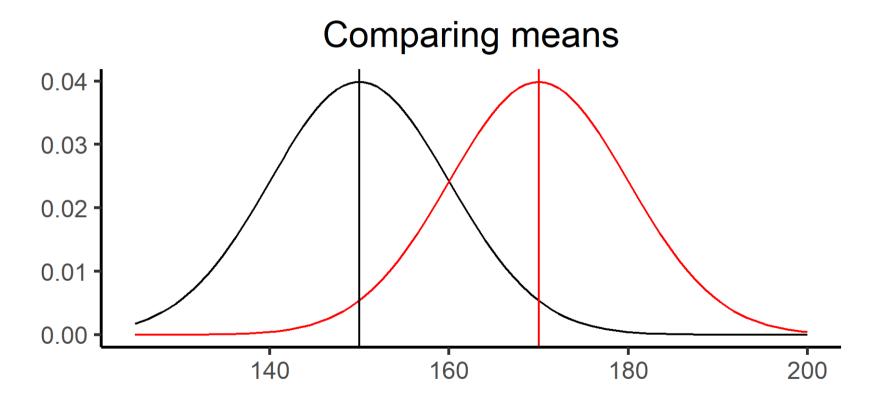


- Write down whether you think these means (two lines) are different. Write either:
 - Yes
 - \circ No
 - It depends

Differences in Means

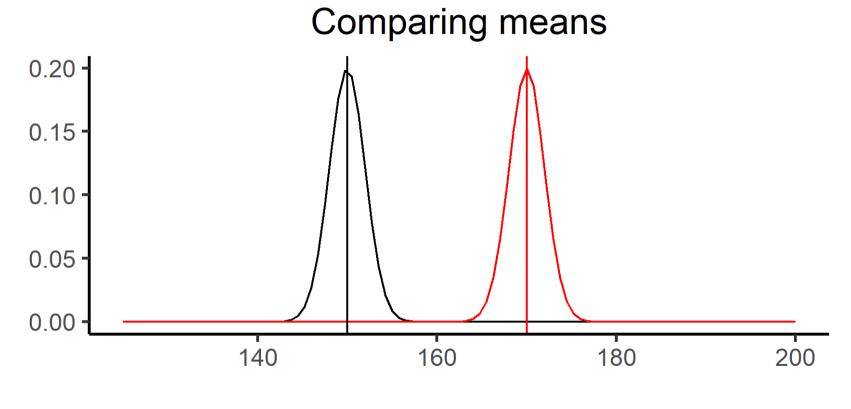
- Critical thinking:
- 1. Why did you write the answers you did?
- 2. If you wrote, "It depends", why can we not tell whether they are different or not?
- 3. What else might we want to know in order to know whether not the group means could be thought of as coming from the same distribution?

All the Information



Height

All the Information



Height

Questions?

T-Test: One Sample

t-statistic

- Recall when talking about hypothesis testing:
 - We calculate a test statistic that represents our question
 - We compare our sample value to the sampling distribution under the null
- Here the test statistic is a *t*-statistic

t-statistic

$$t = rac{ar{x} - \mu_0}{SE_{ar{x}}} \hspace{0.5cm} ext{where} \hspace{0.5cm} SE_{ar{x}} = rac{s}{\sqrt{n}}$$

• The numerator = a difference in means

• where

- \bar{x} = sample mean
- μ_0 = hypothesized value
- $SE_{\bar{x}}$ = standard error of the mean
- The denominator = a estimate of variability
 - where
 - *s* = sample estimated standard deviation of *x*
 - n = sample size
- *t* = a standardized difference in means

Hypotheses

Two-tailed

 $H_0: \mu=\mu_0 \qquad \mathrm{vs} \qquad H_1: \mu
eq \mu_0 \qquad \qquad H_0: \mu-\mu_0=0 \qquad \mathrm{vs} \qquad H_1: \mu-\mu_0
eq 0$

One-tailed

 $H_0: \mu = \mu_0 ~~{
m vs}~~ H_1: \mu < \mu_0 ~~ H_0: \mu - \mu_0 = 0 ~~{
m vs}~~ H_1: \mu - \mu_0 < 0$

$$H_0: \mu=\mu_0 \qquad \mathrm{vs} \qquad H_1: \mu>\mu_0 \qquad \qquad H_0: \mu-\mu_0=0 \qquad \mathrm{vs} \qquad H_1: \mu-\mu_0>0$$

Questions?

Professor Retirement Age

- Suppose I want to know whether the retirement age of Professors at my University is the same as the national average
- The national average age of retirement for Prof's is 65
- So I look at the age of the last 40 Prof's that have retired at Edinburgh and compare against this value

Data

A tibble: 40 × 2 ## ID Age ## <chr> <dbl> ## 1 Prof1 76 2 Prof2 66 ## ## 3 Prof3 58 ## 4 Prof4 68 ## 5 Prof5 79 6 Prof6 74 ## ## 7 Prof7 75 ## 8 Prof8 50 9 Prof9 ## 69 ## 10 Prof10 70 ## # **i** 30 more rows

Hypotheses

- Let's assume a priori we have no idea of the ages the Prof's retired.
- I elect to use a two-tailed test with alpha (α) of .05, and specify the hypotheses as:

 $egin{aligned} H_0: \mu = \mu_0 \ H_1: \mu
eq \mu_0 \end{aligned}$

Calculation

$$t = rac{ar{x} - \mu_0}{SE_{ar{x}}} \hspace{0.5cm} ext{where} \hspace{0.5cm} SE_{ar{x}} = rac{s}{\sqrt{n}}$$

- Steps to calculate *t*:
 - $\circ~$ Calculate the sample mean $(ar{x})$
 - \circ Calculate the sample standard deviation (s)
 - Check I know my sample size (n)
 - Calculate the standard error of the mean $\left(\frac{s}{\sqrt{n}}\right)$

Calculation

$$t = rac{ar{x} - \mu_0}{SE_{ar{x}}} \hspace{0.5cm} ext{where} \hspace{0.5cm} SE_{ar{x}} = rac{s}{\sqrt{n}}$$

```
dat |>
  summarise(
    mu0 = 65,
    xbar = mean(Age),
    s = sd(Age),
    n = n()
) |>
  mutate(
    se = s/sqrt(n)
) |>
  kable(digits = 2) |>
  kable_styling(full_width = FALSE)
```

mu0	xbar	S	n	se
65	66.3	10.01	40	1.58

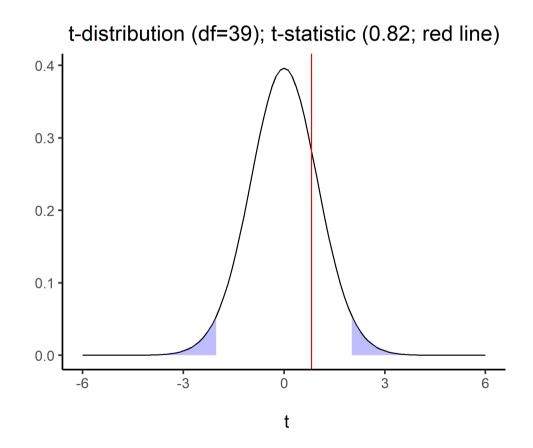
Calculation

	mu0	xbar	S	n	se	
			10.01			
$t=rac{ar{x}-\mu}{rac{s}{\sqrt{n}}}$	<u>0</u> = -	$\frac{66.30}{\frac{1}{\sqrt{2}}}$	-65.	00	$=\frac{1.3}{1.3}$	$\frac{30}{58} = 0.82$

• So in our example t = 0.82

- The sampling distribution for *t*-statistics is a *t*-distribution
- The *t*-distribution is a continuous probability distribution very similar to the normal distribution
 - Key parameter = degrees of freedom (df)
 - $\circ \ \, {\rm df} \, {\rm are} \, {\rm a} \, {\rm function} \, {\rm of} \, n$
 - As *n* increases (and thus as df increases), the *t*-distribution approaches a normal distribution
- For a one sample t-test, we compare our test statistic to a t-distribution with n-1 df

- We have all the pieces we need:
 - Degrees of freedom = n-1 = 40-1 = 39
 - \circ We have our *t*-statistic (0.82)
 - Hypothesis to test (two-tailed)
 - $\circ \, \alpha$ level (.05)
- Now all we need is the critical value from the associated *t*-distribution in order to make our decision

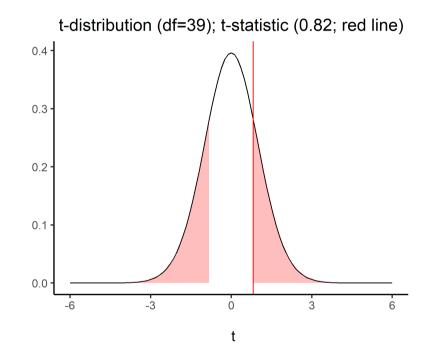


```
tibble(
   LowerCrit = round(qt(0.025, 39),2),
   UpperCrit = round(qt(0.975, 39),2),
)
```

##	#	A tibble:	1 × 2
##		LowerCrit	UpperCrit
##		<dbl></dbl>	<dbl></dbl>
##	1	-2.02	2.02

- Our critical value is 2.02
- Our *t*-statistic (0.82) is closer to 0 than this
- So we fail to reject the null hypothesis

Exact p-value



<pre>tibble(Exactp = round(2*(1-pt(0.821, 39)),2))</pre>	
## # A tibble: 1 × 1 ## Exactp ## <dbl> ## 1 0.42</dbl>	

- p=.42, which is > lpha
- Thus, we fail to reject the null hypothesis

Specifying Hypotheses in R

- alternative = refers to the direction of our alternative hypothesis (H_1)
 - \circ $\mu < \mu_0$:alternative="less"
 - Our Edinburgh Prof's have a younger retirement age than the national average
 - \circ $\mu > \mu_0$:alternative="greater"
 - Our Edinburgh Prof's have a older retirement age than the national average
 - $\circ \ \mu
 eq \mu_0$:alternative="two.sided"
 - Our Edinburgh Prof's have a different retirement age than the national average

t.test(dat\$Age, mu=65, alternative="____")

One Sample T-Test in R

t.test(dat\$Age, mu=65, alternative="two.sided")

```
##
## One Sample t-test
##
## data: dat$Age
## t = 0.82152, df = 39, p-value = 0.4163
## alternative hypothesis: true mean is not equal to 65
## 95 percent confidence interval:
## 63.09922 69.50078
## sample estimates:
## mean of x
## 66.3
```

Write Up

A one sample t-test was conducted to determine if there was a statistically significant ($\alpha = .05$) mean difference between the average retirement age of Professors and the age at retirement of a sample of 40 Edinburgh Professors. Although the sample had a higher average age of retirement (M = 66.3, SD = 10.01) than the population (M = 65), this difference was not statistically significant (t(39) = 0.82, p = .416, two - tailed).

Questions?

Data Requirements & Assumptions

Data Requirements

- A numeric variable
- A known mean that we wish to compare our sample to
- A sample of data from which we calculate the sample mean

Assumption Checks Summary

	Description	One Sample t-test	Independent Samples t-test	Paired Samples t-test	
Normality	Numeric variable (or difference) is normally distributed OR sample size is sufficiently large.	Yes (variable). Sample size guideline: n ≥ 30	Yes (variable in each group). Sample size guideline: $n1 \ge 30$ and $n2 \ge 30$	Yes (difference). Sample size guideline: number of pairs ≥ 30	
Tests:	Descriptive Statistics and Plots; QQ- Plot; Shapiro-Wilks Test				
Independence	Observations are sampled independently.	Yes	Yes (within and across groups)	Yes (across pairs)	
Tests:	None. Design issue.				
Homogeneity of variance	Population standard deviation is the same in both groups.	NA	Yes*	NA	
Tests:	F-test				
Matched Pairs in data	For paired sample, each observation must have matched pair.	NA	NA	Yes	
Tests:	None. Data structure issue.				
* Welch t-test is available if this is not met					

Data Requirements & Assumptions: How to Check/Test

- DV is numeric
 - The dependent variable should be measured on a interval/ratio/integer scale
- Independence
 - $\circ~$ More of a study design issue, and cannot directly test
- Normality
 - Can be checked with descriptive statistics, visually with plots, and with a Shapiro-Wilks test

Normality: Skew

- Skew is a descriptive statistic informing us of both the direction and magnitude of asymmetry
 - Below are some rough guidelines on how to interpret skew
 - No strict cuts for skew these are loose guidelines

Verbal label	Magnitude of skew in absolute value
Generally not problematic	Skew < 1
Slight concern	1 > Skew < 2
Investigate impact	Skew > 2

Skew in R

```
library(psych)
dat |>
  summarise(
    skew = round(skew(Age),2)
)
```

```
## # A tibble: 1 × 1
## skew
## <dbl>
## 1 -0.63
```

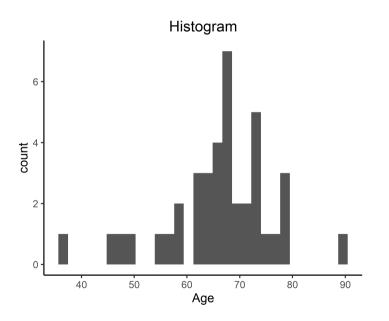
• Skew is low (< 1), so we would conclude that it is not problematic

Normality: Visual Assessment

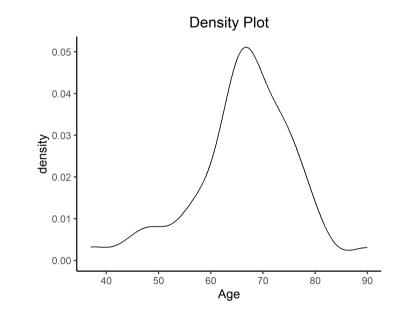
- We can visually assess normality by plotting the distribution of our variable:
 - Histograms
 - The count (or frequency) of data points that fall within specified intervals/bins
 - Density Plots
 - The probability density (or proportion of values) of data points at each value of the observed variable
 - QQ-Plots (Quantile-Quantile plot):
 - Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution)
 - Quantile = the percent of points falling below a given value
 - For a normality check, we can compare our own data to data drawn from a normal distribution

Histogram & Density Plots in R

```
ggplot(data = dat, aes(x=Age)) +
geom_histogram() +
labs(title = "Histogram")
```



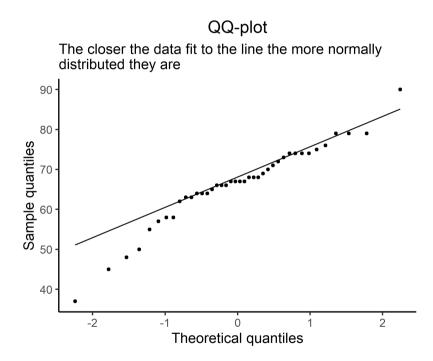
ggplot(data = dat, aes(x=Age)) +
geom_density() +
labs(title = "Density Plot")



• Our histogram looks "lumpy", but we have relatively low *n* for looking at these plots • Our density plot looks relatively normal

QQ-Plots in R

```
ggplot(data = dat, aes(sample = Age)) +
geom_qq() +
geom_qq_line() +
labs(title="QQ-plot",
    x = "Theoretical quantiles",
    y = "Sample quantiles")
```



- This looks a little concerning
- We have some deviation in the lower left corner
- This is showing we have more lower values for age than would be expected

Normality: Shapiro-Wilks Test

- Shapiro-Wilks test:
 - Checks properties of the observed data against properties we would expected from normally distributed data
 - Statistical test of normality
 - \circ H_0 : data = the sample came from a population that is normally distributed
 - $\circ \ p$ -value < lpha = reject the null, data are not normal
 - Sensitive to n as all p-values will be
 - In very large *n*, normality should also be checked with QQ-plots alongside statistical test

Shapiro-Wilks Test in R

shapiro.test(dat\$Age)

```
##
## Shapiro-Wilk normality test
##
## data: dat$Age
## W = 0.95122, p-value = 0.08354
```

• Fail to reject the null, *p* = .084, which is > .05

Questions?

Effect Size

Cohen's D

- Cohen's-D is the standardized effect size for measuring the difference in means
 - Having a standardized metric is useful for comparisons across studies
 - It is also useful for thinking about power calculations
- The basic form of *D* is the same across the different *t*-tests:

 $D = rac{Differece}{Variation}$

Interpreting Cohen's D

- Below are some rough guidelines on how to interpret the size of the effect
- These are not exact labels, but a loose guidance based on empirical research
- Perhaps the most common "cut-offs" for *D*-scores:

Verbal label	Magnitude of D in absolute value
Small (or weak)	≤ 0.20
Medium (or moderate)	pprox 0.50
Large (or strong)	≥ 0.80

Cohen's D: One Sample T-Test

• One sample *t*-test:

$$D = rac{ar{x} - \mu_0}{s}$$

- \circ where
 - \bar{x} = sample mean
 - μ_0 = hypothesised mean
 - s = sample standard deviation

Cohen's D: One Sample T-Test in R

library(effectsize)
cohens_d(dat\$Age, mu=65, alternative="two.sided")

Cohen's d | 95% CI
-----## 0.13 | [-0.18, 0.44]
##
- Deviation from a difference of 65.

Write Up: Data Requirements, Assumptions, & Effect Size

The DV of our study, Age, was measured on a continuous scale, and data were independent (based on study design). The assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as well as statistically via a Shapiro-Wilks test. Whilst the QQplot did show some deviation from the diagonal line, the Shapiro-Wilks test suggested that the sample came from a population that was normally distributed (W = 0.95, p = .084). This was inline with the histogram and density plot, which suggested that Age was normally distributed (and where skew < 1). The size of the effect was found to be small D = 0.13[-0.18, 0.44].

Summary

- Today we have covered:
 - Basic structure of the one sample *t*-test
 - Calculations
 - Interpretation
 - Assumption checks
 - Effect size measures (Cohen's *D*)

This Week

Tasks

- Attend both lectures
- Attend your lab and work on the assessed report with your group (due by 12 noon on Friday 28th of March 2025)
- Complete the weekly quiz
 - Opened Monday at 9am
 - Closes Sunday at 5pm

Support

- Office Hours: for one-to-one support on course materials or assessments (see LEARN > Course information > Course contacts)
- **Piazza**: help each other on this peer-to-peer discussion forum
- Student Adviser: for general support while you are at university (find your student adviser on MyEd/Euclid)