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Learning Objectives
Understand when to use a one sample -test
Understand the null hypothesis for a one sample -test
Understand how to calculate the test statistic
Know how to conduct the test in R

t
t
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Topics for Today
Introduce the three types of -test
One sample -test example
Inferential tests for the one sample -test
Assumptions and effect size

t
t

t
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Introduction
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T-Test: Purpose
-tests (generally) concern testing the difference between two means

Another way to state this is that the scores of two groups being tested are from the sample underlying population
distribution

Types of -test:

One sample: compare the mean in a sample to a known mean
Independent samples: compare the means of two independent samples
Paired samples: compare the mean scores from a single sample comprising matched (or naturally related) pairs

t

t
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Write down whether you think these means (two lines)
are different. Write either:

Yes
No
It depends

Are These Means Different?
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Write down whether you think these means (two lines)
are different. Write either:

Yes
No
It depends

What About These?
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Differences in Means
Critical thinking:

1. Why did you write the answers you did?
2. If you wrote, "It depends", why can we not tell whether they are different or not?
3. What else might we want to know in order to know whether not the group means could be thought of as coming from the

same distribution?
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All the Information
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All the Information
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Questions?
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T-Test: One Sample
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t-statistic
Recall when talking about hypothesis testing:

We calculate a test statistic that represents our question
We compare our sample value to the sampling distribution under the null

Here the test statistic is a -statistict
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t-statistic

The numerator = a difference in means

where
 = sample mean

 = hypothesized value
 = standard error of the mean

The denominator = a estimate of variability

where
 = sample estimated standard deviation of 
 = sample size

 = a standardized difference in means

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n

x̄
μ0

SEx̄

s x
n

t
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Two-tailed

One-tailed

Hypotheses

H0 : μ = μ0 vs H1 : μ ≠ μ0

H0 : μ = μ0 vs H1 : μ < μ0

H0 : μ = μ0 vs H1 : μ > μ0

H0 : μ − μ0 = 0 vs H1 : μ − μ0 ≠ 0

H0 : μ − μ0 = 0 vs H1 : μ − μ0 < 0

H0 : μ − μ0 = 0 vs H1 : μ − μ0 > 0

16 / 53



Questions?
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Example
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Professor Retirement Age
Suppose I want to know whether the retirement age of Professors at my University is the same as the national average

The national average age of retirement for Prof's is 65

So I look at the age of the last 40 Prof's that have retired at Edinburgh and compare against this value
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Data
## # A tibble: 40 × 2
##    ID       Age
##    <chr>  <dbl>
##  1 Prof1     76
##  2 Prof2     66
##  3 Prof3     58
##  4 Prof4     68
##  5 Prof5     79
##  6 Prof6     74
##  7 Prof7     75
##  8 Prof8     50
##  9 Prof9     69
## 10 Prof10    70
## # ℹ 30 more rows
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Hypotheses
Let's assume a priori we have no idea of the ages the Prof's retired.

I elect to use a two-tailed test with alpha  of .05, and specify the hypotheses as:(α)

H0 : μ = μ0

H1 : μ ≠ μ0
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Calculation

Steps to calculate :
Calculate the sample mean 
Calculate the sample standard deviation 
Check I know my sample size 
Calculate the standard error of the mean 

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n

t
(x̄)

(s)
(n)

( )s

√n
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Calculation

dat |>
  summarise(
    mu0 = 65,
    xbar = mean(Age),
    s = sd(Age),
    n = n()
  ) |>
  mutate(
    se = s/sqrt(n)
  )  |>
  kable(digits = 2) |>
  kable_styling(full_width = FALSE)

mu0 xbar s n se

65 66.3 10.01 40 1.58

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n
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Calculation
mu0 xbar s n se

65 66.3 10.01 40 1.58

So in our example 

t = = = = 0.82
x̄ − μ0

s

√n

66.30 − 65.00
10.01

√40.00

1.30

1.58

t = 0.82
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Is our Test Significant?
The sampling distribution for -statistics is a -distribution

The -distribution is a continuous probability distribution very similar to the normal distribution

Key parameter = degrees of freedom (df)
df are a function of 
As  increases (and thus as df increases), the -distribution approaches a normal distribution

For a one sample -test, we compare our test statistic to a -distribution with  df

t t

t

n
n t

t t n − 1
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Is our Test Significant?
We have all the pieces we need:

Degrees of freedom = -1 = 40-1 = 39
We have our -statistic (0.82)
Hypothesis to test (two-tailed)

 level (.05)

Now all we need is the critical value from the associated -distribution in order to make our decision

n
t

α

t
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tibble(
  LowerCrit = round(qt(0.025, 39),2),
  UpperCrit = round(qt(0.975, 39),2),
)

## # A tibble: 1 × 2
##   LowerCrit UpperCrit
##       <dbl>     <dbl>
## 1     -2.02      2.02

Is our Test Significant?
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Is our Test Significant?
Our critical value is 2.02

Our -statistic (0.82) is closer to 0 than this

So we fail to reject the null hypothesis

t
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tibble(
  Exactp = round(2*(1-pt(0.821, 39)),2)
)

## # A tibble: 1 × 1
##   Exactp
##    <dbl>
## 1   0.42

Exact p-value

, which is 

Thus, we fail to reject the null hypothesis

p = .42 > α
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Specifying Hypotheses in R
alternative = refers to the direction of our alternative hypothesis 

: alternative="less"
Our Edinburgh Prof's have a younger retirement age than the national average

: alternative="greater"
Our Edinburgh Prof's have a older retirement age than the national average

: alternative="two.sided"
Our Edinburgh Prof's have a different retirement age than the national average

t.test(dat$Age, mu=65, alternative="______")

(H1)
μ < μ0

μ > μ0

μ ≠ μ0
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One Sample T-Test in R
t.test(dat$Age, mu=65, alternative="two.sided")

## 
##     One Sample t-test
## 
## data:  dat$Age
## t = 0.82152, df = 39, p-value = 0.4163
## alternative hypothesis: true mean is not equal to 65
## 95 percent confidence interval:
##  63.09922 69.50078
## sample estimates:
## mean of x 
##      66.3
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Write Up
A one sample -test was conducted to determine if there was a statistically significant  mean difference between the
average retirement age of Professors and the age at retirement of a sample of 40 Edinburgh Professors. Although the sample had a
higher average age of retirement  than the population , this difference was not statistically
significant .

t (α = .05)

(M = 66.3,SD = 10.01) (M = 65)
(t(39) = 0.82, p = .416, two − tailed)
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Questions?
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Data Requirements & Assumptions
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Data Requirements
A numeric variable

A known mean that we wish to compare our sample to

A sample of data from which we calculate the sample mean
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Assumption Checks Summary
Description One Sample t-test Independent Samples t-test Paired Samples t-test

Normality
Numeric variable (or difference) is
normally distributed OR sample size is
sufficiently large.

Yes (variable).
Sample size
guideline: n ≥ 30

Yes (variable in each group).
Sample size guideline: n1 ≥ 30
and n2 ≥ 30

Yes (difference). Sample
size guideline: number of
pairs ≥ 30

Tests: Descriptive Statistics and Plots; QQ-
Plot; Shapiro-Wilks Test

Independence Observations are sampled
independently.

Yes Yes (within and across groups) Yes (across pairs)

Tests: None. Design issue.

Homogeneity of
variance

Population standard deviation is the
same in both groups.

NA Yes* NA

Tests: F-test

Matched Pairs in
data

For paired sample, each observation
must have matched pair.

NA NA Yes

Tests: None. Data structure issue.

* Welch t-test is available if this is not met
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Data Requirements & Assumptions: How to
Check/Test

DV is numeric
The dependent variable should be measured on a interval/ratio/integer scale

Independence
More of a study design issue, and cannot directly test

Normality
Can be checked with descriptive statistics, visually with plots, and with a Shapiro-Wilks test
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Normality: Skew
Skew is a descriptive statistic informing us of both the direction and magnitude of asymmetry

Below are some rough guidelines on how to interpret skew
No strict cuts for skew - these are loose guidelines

Verbal label Magnitude of skew in absolute value

Generally not problematic | Skew | < 1

Slight concern 1 > | Skew | < 2

Investigate impact | Skew | > 2
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Skew in R
library(psych)
dat |>
  summarise(
    skew = round(skew(Age),2)
  )

## # A tibble: 1 × 1
##    skew
##   <dbl>
## 1 -0.63

Skew is low (< 1), so we would conclude that it is not problematic
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Normality: Visual Assessment
We can visually assess normality by plotting the distribution of our variable:

Histograms

The count (or frequency) of data points that fall within specified intervals/bins

Density Plots

The probability density (or proportion of values) of data points at each value of the observed variable

QQ-Plots (Quantile-Quantile plot):

Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution)
Quantile = the percent of points falling below a given value
For a normality check, we can compare our own data to data drawn from a normal distribution
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ggplot(data = dat, aes(x=Age)) +
  geom_histogram() + 
  labs(title = "Histogram")

Our histogram looks "lumpy", but we have relatively low
 for looking at these plots

ggplot(data = dat, aes(x=Age)) +
  geom_density() + 
  labs(title = "Density Plot")

Our density plot looks relatively normal

Histogram & Density Plots in R

n
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ggplot(data = dat, aes(sample = Age)) +
  geom_qq() +
  geom_qq_line() + 
      labs(title="QQ-plot", 
       x = "Theoretical quantiles",
       y = "Sample quantiles")

QQ-Plots in R

This looks a little concerning
We have some deviation in the lower left corner
This is showing we have more lower values for age than would be expected
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Normality: Shapiro-Wilks Test
Shapiro-Wilks test:

Checks properties of the observed data against properties we would expected from normally distributed data
Statistical test of normality

: data = the sample came from a population that is normally distributed
-value  = reject the null, data are not normal

Sensitive to  as all -values will be
In very large , normality should also be checked with QQ-plots alongside statistical test

H0

p < α

n p

n
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Shapiro-Wilks Test in R
shapiro.test(dat$Age)

## 
##     Shapiro-Wilk normality test
## 
## data:  dat$Age
## W = 0.95122, p-value = 0.08354

Fail to reject the null,  = .084, which is > .05p
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Questions?
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Effect Size
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Cohen's D
Cohen's-D is the standardized effect size for measuring the difference in means

Having a standardized metric is useful for comparisons across studies
It is also useful for thinking about power calculations

The basic form of  is the same across the different -tests:D t

D =
Differece

V ariation
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Interpreting Cohen's D
Below are some rough guidelines on how to interpret the size of the effect

These are not exact labels, but a loose guidance based on empirical research

Perhaps the most common "cut-offs" for -scores:

Verbal label Magnitude of  in absolute value

Small (or weak)

Medium (or moderate)

Large (or strong)

D

D

≤ 0.20

≈ 0.50

≥ 0.80
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Cohen's D: One Sample T-Test
One sample -test:

where
 = sample mean

 = hypothesised mean
 = sample standard deviation

t

D =
x̄ − μ0

s

x̄
μ0

s
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Cohen's D: One Sample T-Test in R
library(effectsize)
cohens_d(dat$Age, mu=65, alternative="two.sided")

## Cohen's d |        95% CI
## -------------------------
## 0.13      | [-0.18, 0.44]
## 
## - Deviation from a difference of 65.
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Write Up: Data Requirements, Assumptions, &
Effect Size
The DV of our study, Age, was measured on a continuous scale, and data were independent (based on study design). The
assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as well as statistically via a Shapiro-
Wilks test. Whilst the QQplot did show some deviation from the diagonal line, the Shapiro-Wilks test suggested that the sample
came from a population that was normally distributed . This was inline with the histogram and density
plot, which suggested that Age was normally distributed (and where skew < 1). The size of the effect was found to be small

.

(W = 0.95, p = .084)

D = 0.13[−0.18, 0.44]
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Summary
Today we have covered:

Basic structure of the one sample -test
Calculations
Interpretation
Assumption checks
Effect size measures (Cohen's )

t
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Tasks
Attend both lectures

Attend your lab and work on the assessed report with
your group (due by 12 noon on Friday 28th of March
2025)

Complete the weekly quiz

Opened Monday at 9am
Closes Sunday at 5pm

Support
Office Hours: for one-to-one support on course
materials or assessments
(see LEARN > Course information > Course contacts)

Piazza: help each other on this peer-to-peer discussion
forum

Student Adviser: for general support while you are at
university
(find your student adviser on MyEd/Euclid)

This Week
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