DapR1: Notes on the Live R Session, Week 8

This week, we will be picking up where we left off the last time. We’ll continue working with probability
using operators. We’'ll also talk about writing a clean report using Markdown, including learning about
in-line R coding and notation.

First, let’s load the tidyverse and create our sample space. We’ll also recreate our sample data from last
week. Because we used the set.seed() function last week, we can use the same seed value to make R generate
the same data we used last week.

library(tidyverse)
skittles <- c('red', 'green', 'yellow', 'purple', 'orange')

set.seed(2210)
sb <- tibble(Obs = sample(skittles, 5, replace = T))
100 <- tibble(Obs = sample(skittles, 100, replace = T))

Although we're working with character data in this example, you can also create sample data with numeric
values. Consider an example where you want to calculate the probability of rolling an even number on a
die. You could use seq() function, which allows you to generate sequences of numbers, to create your sample
space and your events of interest:

dsp <- seq(l, 6)
dEv <- seq(2, 6, by = 2)

Joint Probability
With joint probability, we're interested in looking at the probability of multiple outcomes. For example, if
we were to select a skittle from the bag, what’s the likelihood we would select a yellow OR. a purple?

Because these events are mutually exclusive, we would expect their joint probability to be the sum of their
individual probabilities.

p(yellow U purple) = .20 + .20 = .40

Here, we'll review two ways you can specify multiple events of interest and use these methods to compute
joint probability in your sample.

The AND and OR operators

Two operators that may be used for specifying multiple conditions are & and |. As you might expect, &
refers to ‘and’. Tt allows you to specify values that meet all given conditions. The | operator stands for ‘or’
and allows you to specify values that meet any of the given conditions.

successes <- s100 == 'yellow'|s100 == 'purple'
failures <- s100 != 'yellow' & s100 != 'purple'

sum(successes)/(sum(successes) + sum(failures))

[1] 0.4

%in% or is.element()

You can get the same results using the %in% operator. This operator can be used to determine whether
a given element (or values from a vector of elements) is found in a dataset or vector. Also, note the use
of another operator. The ! operator stands for ‘mot’ and allows you to select values that do not meet a
specified condition.

events <- c('purple', 'yellow')
successes <- s100$0bs %in% events
failures <- !s100$0bs %in% events

sum(successes)/(sum(successes) + sum(failures))

[1] 0.4

You can also use the is.element() function in the same way. is.element(z, y) is identical to x %in% y

is.element (s100$0bs, events)

[1] FALSE TRUE TRUE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE TRUE
[13] FALSE TRUE FALSE FALSE FALSE TRUE FALSE TRUE TRUE FALSE TRUE FALSE
[25] FALSE FALSE FALSE TRUE FALSE TRUE FALSE TRUE TRUE TRUE TRUE FALSE
[37] TRUE FALSE FALSE TRUE FALSE FALSE FALSE FALSE FALSE TRUE TRUE TRUE
[49] FALSE FALSE FALSE TRUE TRUE FALSE TRUE FALSE TRUE FALSE TRUE FALSE
[61] FALSE TRUE FALSE FALSE FALSE TRUE TRUE TRUE FALSE FALSE TRUE TRUE
[73] TRUE TRUE FALSE FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE FALSE
[85] FALSE FALSE FALSE FALSE FALSE TRUE FALSE FALSE TRUE FALSE FALSE FALSE
[97] FALSE TRUE FALSE FALSE

successes <- is.element(s100$0bs, events)
failures <- !is.element(s100$0bs, events)
sum(successes)/(sum(successes) + sum(failures))

[1] 0.4

Now, let’s compute the probability of selecting a yellow AND a purple skittle in two selections.
To do this, we would use we use the following formula:
p(yellow N purple) = .20 x .20 = .04

Let’s check to see if our data follow the expected result. To do this, we’ll need to add a new column that
represents the second skittle selection:

5100$0bs2 <- sample(skittles, 100, replace = T)
head (s100)

A tibble: 6 x 2
Obs Obs2
<chr> <chr>

1 green orange
2 yellow orange
3 yellow orange
4 orange purple
5 red purple
6 yellow purple

successes <- (s100$0bs=='purple'&s100$0bs2=="'yellow') | (s100$0bs=="yellow'&s100$0bs2=="'purple')
failures <- !successes

sum(successes)/(sum(successes) + sum(failures))

[1] 0.05

You can also look at the proportion table for multiple events:

s100 %>%
table %>
prop.table()

Obs2

Obs green orange purple red yellow
green 0.01 0.05 0.01 0.05 0.06
orange 0.04 0.05 0.06 0.02 0.03
purple 0.03 0.08 0.06 0.02 0.02
red 0.06 0.04 0.050.04 0.03
yellow 0.06 0.06 0.03 0.03 0.01

Note that you can sum the appropriate locations in the proportion table to get the corresponding probability.
pTab <- s100 %>%

table() %>%

prop.table()

pTab['purple', 'yellow'] + pTab['yellow', 'purple']

[1] 0.05

You can also compute the summed values for each row or each column using the addmargins function:

pTab %>%
addmargins ()

Obs2

Obs green orange purple red yellow Sum
green 0.01 0.05 0.01 0.05 0.06 0.18
orange 0.04 0.05 0.06 0.02 0.03 0.20
purple 0.03 0.08 0.06 0.02 0.02 0.21
red 0.06 0.04 0.050.04 0.03 0.22
yellow 0.06 0.06 0.03 0.03 0.01 0.19
Sum 0.20 0.28 0.21 0.16 0.15 1.00

sum(pTab[1,])

[1] 0.18

sum(pTab[,2])

[1] 0.28

However, the table outputs in R are not appropriate for a formal report. If you want to include a table in
your report, you should use the kbl() function to produce a formal table to display your data:

library(kableExtra)

pTab %>%
kbl (booktabs = T, digits = 2, caption = 'Skittles Experiment Data') %>%
kable_styling(latex_options = c('hold_position', 'striped')) %>%
column_spec(l, bold = T) %>%
row_spec(0, bold = T)

Table 1: Skittles Experiment Data

green orange purple red yellow

green 0.01 0.05 0.01 0.05 0.06
orange 0.04 0.05 0.06 0.02 0.03
purple 0.03 0.08 0.06 0.02 0.02
red 0.06 0.04 0.05 0.04 0.03
yellow 0.06 0.06 0.03 0.03 0.01

Conditional Probability Data & Write-Up

Now let’s import some data that we can use to demonstrate conditional probability. We’ll also write up our
results neatly and talk about in-line R coding.

Imagine that we want to investigate the relationship between med school acceptance and academic per-
formance. Specifically we will look at the likelihood of acceptance (yes or no) is related to having higher
marks (e.g., above the 75th percentile or greater in our sample; high or...less high. We’ll just say low for
simplicity’s sake).

dat <- read.csv('https://uoepsy.github.io/data/MedGPA.csv')

summary (dat)

Accept Acceptance Sex BCPM

Length:55 Min. :0.0000 Length:55 Min. :2.410
Class :character 1st Qu.:0.0000 Class :character 1st Qu.:3.260
Mode :character Median :1.0000 Mode :character Median :3.530
Mean :0.5455 Mean :3.501
3rd Qu.:1.0000 3rd Qu.:3.755
Max. :1.0000 Max. :4.000
##

GPA VR PS WS

Min. :2.720 Min. : 6.000 Min. : 5.000 Min. : 4.000

1st Qu.:3.375 1st Qu.: 8.000 1st Qu.: 9.000 1st Qu.: 6.000
Median :3.580 Median :10.000 Median :10.000 Median : 8.000

Mean :3.553 Mean : 9.764 Mean : 9.709 Mean 1 7.148
3rd Qu.:3.770 3rd Qu.:11.000 3rd Qu.:10.500 3rd Qu.: 8.000

Max. :3.970 Max. :13.000 Max. :14.000 Max. :10.000
NA’s 01

BS MCAT Apps

Min. : 6.000 Min. :18.00 Min. : 1.000

1st Qu.: 9.000 1st Qu.:34.00 1st Qu.: 5.000

Median :10.000 Median :36.00 Median : 7.000

Mean : 9.782 Mean :36.27 Mean 8.364

3rd Qu.:11.000 3rd Qu.:39.00 3rd Qu.:11.000

Max. :14.000 Max. :48.00 Max. :24.000

#i#

dat$acceptChar <- ifelse(dat$Acceptance == 'O', 'Rejected', 'Accepted')

dat$GPAsplit <- ifelse(dat$GPA >= quantile(dat$GPA)['757%'], 'High', 'Low')

pTab <- table(dat$GPAsplit, dat$acceptChar) %>%
prop.table() %>%

round(., 2)
pTab
##
#i# Accepted Rejected
High 0.25 0.02
Low 0.29 0.44

Remember from yesterday’s lecture that we can calculate conditional probability using the following formula:

p(ANB)
p(B)

Let’s compare the probability of being accepted given that marks are high with the probability given that
marks are low. In other words, we are comparing an outcome of event A across different levels of event B.
If these events were unrelated, we would expect the probability of event A to be generally consistent across
both levels of B. To do this, we can plug our variables into the formula above:

p(A|B) =

Accepted N High)
p(High)

p(Accepted|High) = il

p(Accepted N Low)

p(Accepted|Low) = o(Low)

Remember, we can pull specific values from the probability table we’ve created.

The probability of being accepted when marks are high:

pTab['High', 'Accepted'l/(sum(pTab['High',]1))

[1] 0.9259259

The probability of being accepted when marks are low:

pTab['Low', 'Accepted']/(sum(pTab['Low',]))

[1] 0.3972603

Here, we see that the values are quite different, which indicates that the probability of acceptance is likely
to be related to overall marks (shocking!). Now let’s show an example of how to write up these results.

EXAMPLE WRITE-UP

In this experiment, we collected data on medical school acceptance rates and school performance from
55 participants. Specifically, we investigated whether acceptance to medical school was related to overall
performance as measured by GPA (High/Low). We calculated the proportion of participants who fell into
each category (see Table 2).

Table 2: Medical School Acceptance by GPA

Accepted Rejected

High 0.25 0.02
Low 0.29 0.44

We computed the probability of acceptance at both levels of GPA. P(Acceptance|GPApiqn) = 0.93.
P(Acceptance|GPAjpy) = 0.4. This indicates that the likelihood of being accepted changes at different
levels of GPA.

The differences in the probability of acceptance across levels of GPA indicate a possible relationship between
school performance and acceptance to medical school.

