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Learning objectives
1. Understand the importance of a confidence interval.

2. Understand the link between standard errors and confidence intervals.

3. Understand how to construct a confidence interval for an unknown parameter of interest.
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Part A

Recap
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Probability to the LEFT of a value x:

p <- pnorm(x, mean = mu, sd = sigma)

Value x having a probability of p to its LEFT:

x <- qnorm(p, mean = mu, sd = sigma)

Example with :

qnorm(0.975)

## [1] 1.96

pnorm(1.96)

## [1] 0.975

Normal distribution

X ∼ N(μ, σ)

N(0, 1)
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Standardisation / z-scoring
Let 

Define:

 follows a standard normal distribution

To transform  back to  we use this transformation:

X ∼ N(μ, σ)

Z =
X − μ

σ

Z ∼ N(0, 1)

μZ = 0

σZ = 1

Z X

X = μ + Z ⋅ σ

5 / 40



Normal 68–95–99.7 rule
Recall that for a random variable , roughly 95% of the values fall between  and :X ∼ N(μ, σ) μ − 2σ μ + 2σ
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qnorm(c(0.025, 0.975))   # using a N(0,1)

## [1] -1.96  1.96

qnorm(0.025)

## [1] -1.96

qnorm(0.025, lower.tail = FALSE)

## [1] 1.96

Normal 68–95–99.7 rule
The interval below contains roughly 95% of the values in the distribution:

To be more accurate, we need to find the x-values (quantiles) that have 0.025 probability to the le� and 0.025 probability to
the right, leaving 0.95 probability in the middle.

[μ − 2 ⋅ σ,  μ + 2 ⋅ σ]
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Normal 68–95–99.7 rule
The values  and  are the quantiles of a standard Normal distribution, cutting a probability of 0.025 in each of the
two tails of the distribution.

To have the quantiles for the original variable  we need to transform  back to :

The interval comprising exactly 95% of the values of  is:

−1.96 1.96

X ∼ N(μ, σ) Z X

z = −1.96 → x = μ − 1.96 ⋅ σ

z = 1.96 → x = μ + 1.96 ⋅ σ

X

[μ − 1.96 ⋅ σ,  μ + 1.96 ⋅ σ]

8 / 40



Estimation
Without loss of generality, we will focus on the mean as the numerical summary of data.

We are typically interested in estimating an unknown population mean  (a parameter) using the mean computed on a
random sample  (a statistic).

We will equivalently call the statistic (sample mean) the estimate.

When estimating an unknown parameter, we should report both

a) the estimate;
b) a measure of our "uncertainty" in the estimate.

Population mean, μ → unknown → example of a parameter

Sample mean, x̄ → we can compute it → example of a statistic

μ

x̄
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Some facts
Statistics vary from sample to sample and have a sampling distribution.

The standard deviation of the sampling distribution is called the standard error (SE)

Informally: SE tells us the size of the typical "estimation error" (= ).x̄ − μ

SE =
σ

√n
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Estimation
The estimate for a population mean is the sample mean, .

Let's now turn to the key question of reporting uncertainty in the estimate. In other words,

How accurate is our estimate?

We are interested in how accurate our statistic  is as an estimate of the unknown parameter .

Accuracy is a combination of two things:

No bias
Precision

We avoid bias if we use random sampling. We have bias if our samples systematically do not include a part of the population.

If you choose convenience samples, you will systematically over-estimate or under-estimate the true value.

Precision relates to the variability of the sampling distribution, and the Standard Error (SE) is used to quantify precision.

As the SE gets smaller, the sample means will tend to be closer to the population mean

x̄

x̄ μ
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Bias vs Precision
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Sampling distribution
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Sampling distribution
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Sampling distribution

15 / 40



16 / 40



Part B

One sample only
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One sample only
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One sample only: Precision of sample mean
If we do NOT have the population data:

we cannot compute , the population mean

we also cannot compute , the population standard deviation

Recall that  is required to assess the precision of the sample mean by computing the SE:

How can we compute the SE of the mean if we do not have data on the full population, and we can only a�ord one sample
of size ?

μ

σ

σ

SE =
σ

√n

n
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One sample only: Precision of sample mean
We must also estimate  with the corresponding sample statistic.

Substitute  with the standard deviation computed in the sample, .

Standard error of the mean becomes:

Report estimate (sample mean), along with a measure of its precision (the above SE).

σ

σ s

SE =
s

√n
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Part C

Confidence Intervals
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Key idea
Parameter estimate = single number. Almost surely the true value will be di�erent from our estimate.

Range of plausible values for the parameter, called confidence interval. More likely that the true value will be captured by a
range.
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Confidence interval
Confidence interval (CI) = range of plausible values for the parameter.

To create a confidence interval we must decide on a confidence level.

Confidence level = a number between 0 and 1 specified by us. How confident do you want to be that the confidence interval
will contain the true parameter value?

The larger the confidence level, the wider the confidence interval.

How confident are you that I am between 39 and 42 years old?

How confident are you that I am between 35 and 50 years old?

How confident are you that I am between 18 and 70 years old?

Typical confidence levels are 90%, 95%, and 99%.
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Recall that if , 95% of the values are
between

The sample mean follows a normal distribution:

where

CI for the population mean

Substitute in the interval above:

That is:

X ∼ N(μ, σ)

[μ − 1.96 ⋅ σ,  μ + 1.96 ⋅ σ]
X̄ ∼ N(μ¯̄̄ ¯̄

X
, σ¯̄̄ ¯̄

X
)

μ¯̄̄ ¯̄
X

= μ

σ¯̄̄ ¯̄
X

= SE =
σ

√n

[μX̄ − 1.96 ⋅ σX̄,  μX̄ + 1.96 ⋅ σX̄]

[μ − 1.96 ⋅ ,  μ + 1.96 ⋅ ]
σ

√n

σ

√n
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Estimates of  and 
Recall that we do not have the full population data. We can only a�ord one sample!

We don't have the population mean  and we estimated it with the sample mean 

However, we also don't have  so we need to estimate it with , the sample standard deviation:

However, this interval is now wrong!

Because we didn't know  and we had to estimate it with , this bring and extra element of uncertainty

As we are unsure about the actual value of the population standard deviation, the reference distribution is no longer Normal,
but a distribution that is more "uncertain" and places higher probability in the tails of the distribution.

When the population standard deviation is unknown, the sample mean follows a t-distribution.

The quantiles -1.96 and 1.96 refer to the normal distribution, so these are wrong and we need to find the correct ones!

μ σ

μ x̄

σ s

[x̄ − 1.96 ⋅ ,  x̄ + 1.96 ⋅ ]
s

√n

s

√n

σ s
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t-distribution
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t-distribution
A distribution similar to the standard Normal distribution, also with a zero mean

Depends on a number called degrees of freedom (DF) = sample size - 1. That is, .

We write the distribution as:

Suppose the sample size is 20. In R:

qt(0.025, df = 19)    # quantile = t-value with 0.025 prob to the LEFT

## [1] -2.093

pt(-2.093, df = 19)   # prob to the LEFT of t = -2.093

## [1] 0.025

df = n − 1

t(n − 1)
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Finally: the correct confidence interval
Now we can finally compute the correct confidence interval.

We need to replace the quantiles with those from the  distribution, denote them by  and , and these will be
di�erent all the time as they depend on the sample size.

Generic form the of the CI for the mean:

Generic form the of the 95% CI for the mean with a sample of size :

qt(c(0.025, 0.975), df = 20 - 1)

## [1] -2.093  2.093

t(n − 1) −t
∗ +t

∗

[x̄ − t
∗ ⋅ ,  x̄ + t

∗ ⋅ ]
s

√n

s

√n

n = 20

[x̄ − 2.093 ⋅ ,  x̄ + 2.093 ⋅ ]
s

√n

s

√n
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Other confidence levels
Generic form the of the 99% CI for the mean with a sample of size :

qt(c(0.005, 0.995), df = 20 - 1)

## [1] -2.861  2.861

n = 20

[x̄ − 2.861 ⋅ ,  x̄ + 2.861 ⋅ ]
s

√n

s

√n
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Example: 95% CI for the pop. mean salary
Parameter of interest: mean yearly salary of a NFL player in the year 2019, denoted .

Sample of 50 players:

library(tidyverse)
nfl_sample <- read_csv("https://uoepsy.github.io/data/NFLSample2019.csv")
dim(nfl_sample)

## [1] 50  5

head(nfl_sample)

## # A tibble: 6 × 5
##   Player          Position Team    TotalMoney YearlySalary
##   <chr>           <chr>    <chr>        <dbl>        <dbl>
## 1 Najee Goode     43OLB    Jaguars      0.805        0.805
## 2 Jack Crawford   43DT     Falcons      9.9          2.48 
## 3 Tra Carson      RB       Lions        1.23         0.615
## 4 Jordan Richards S        Ravens       0.805        0.805
## 5 Desmond Trufant CB       Falcons     68.8         13.8  
## 6 Alex Anzalone   43OLB    Saints       3.47         0.866

μ
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xbar <- mean(nfl_sample$YearlySalary)
xbar

## [1] 3.359

s <- sd(nfl_sample$YearlySalary)
s

## [1] 4.312

n <- nrow(nfl_sample)
n

## [1] 50

SE <- s / sqrt(n)
SE

## [1] 0.6098

tstar <- qt(c(0.025, 0.975), df = n-1)
tstar

## [1] -2.01  2.01

xbar - 2.01 * SE

## [1] 2.133

xbar + 2.01 * SE

## [1] 4.584

or:

xbar + tstar * SE

## [1] 2.133 4.584

Example: 95% CI for the pop. mean salary
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Example: 95% CI for the pop. mean salary
The 95% confidence interval for the mean salary of all NFL players in the year 2019 is [2.13, 4.58] million dollars.

Write this up as:

We are 95% confident that the average salary of a NFL player in 2019 was between 2.13 and 4.58 million dollars.

If it makes more sense in your sentence, you can report the sample mean followed by the CI in brackets (to tell the reader how
precise your estimate is).

Use the format M = ..., 95% CI [..., ...].

However, make sure you always have an interpretation of the confidence interval in context somewhere in your report.

The average salary of a NFL player in 2019 was M = 3.36 million dollars, 95% CI [2.13, 4.58]. We are 95% confident that
the average salary was between 2.13 and 4.58 million dollars.
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Part D

Warning on interpretation
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Warning!
If you had many random samples and computed a 95% confidence interval from each sample:

about 95% of those intervals will contain the true parameter value
about 5% of those intervals will not contain the true parameter value

Example 1: if you had 100 random samples and computed a 95% confidence interval from each sample:

about 95 (= 100 * 0.95) of those intervals will contain the true parameter value
about 5 (= 100 * 0.05) of those intervals will not contain the true parameter value

Example 2: if you had 20 random samples and computed a 95% confidence interval from each sample:

about 19 (= 20 * 0.95) of those intervals will contain the true parameter value
about 1 (= 20 * 0.05) of those intervals will not contain the true parameter value
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Warning!
Consider again example 2, where you have 20 random samples and built a confidence interval from each sample.

We speak about probability when we refer to the collection of those 20 confidence intervals.
That is, the probability the that collection of confidence intervals will contain the true parameter value is 0.95.

Think of this as

We speak of confidence when we refer to just one confidence interval that we have computed.
Say the 95% CI is [2.5, 5.3] min. We would say: we are 95% confident that the population mean is between 2.5 and 5.3
minutes.

It is wrong to say that there is a 95% probability that the population mean is between 2.5 and 5.3 minutes.

= = 0.95
number of CIs containing μ

total number of CIs

19

20
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Warning!
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Warning!
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