T-Test: Paired Samples

Data Analysis for Psychology in R 1 Semester 2, Week 8

Dr Emma Waterston

Department of Psychology The University of Edinburgh

Learning Objectives

- Understand when to use an paired sample *t*-test
- Understand the null hypothesis for an paired sample *t*-test
- Understand how to calculate the test statistic
- Know how to conduct the test in R

Topics for Today

- Conceptual background and introduction to our example
- Calculations and R-functions
- Assumptions and effect size

Paired T-Test Purpose & Data

- The paired sample *t*-test is used when we want to test the difference in mean scores for a sample comprising matched (or naturally related) pairs.
- Examples:
 - Pre-test and post-test score with an intervention administered between the time points
 - A participant experiences both experimental conditions (e.g., caffeine and placebo)
- Data Requirements
 - A continuously measured variable.
 - A binary variable denoting pairing.

t-statistic

$$t = rac{\overline{d} - \mu_{d_0}}{SE_{\overline{d}}} \qquad ext{where} \qquad SE_{\overline{d}} = rac{s_d}{\sqrt{n}}$$

- $ar{d}$ = mean of the individual difference scores (d_i) where $d_i = x_{i1} x_{i2}$
- μ_{d_0} is the hypothesised population mean difference in the null hypothesis (which is usually assumed to be 0)
- $SE_{\bar{d}}$ = standard error of mean difference (d_i)
 - $\circ s_d$ = standard deviation of the difference scores (d_i)
 - \circ *n* = sample size = number of matched pairs
- Sampling distribution is a t-distribution with n-1 degrees of freedom
- Note, this is just essentially a one sample test on the difference scores

Hypotheses

• Two-tailed:

$$egin{aligned} H_0: \mu_d &= \mu_{d_0} \ H_1: \mu_d
eq \mu_{d_0} \end{aligned}$$

• One-tailed

$$egin{aligned} H_0: \mu_d &= \mu_{d_0} \ H_1: \mu_d &< \mu_{d_0} \ H_1: \mu_d &> \mu_{d_0} \end{aligned}$$

• Two-tailed:

$$egin{aligned} H_0: \mu_d - \mu_{d_0} &= 0 \ H_1: \mu_d - \mu_{d_0}
eq 0 \end{aligned}$$

One-tailed

$$egin{aligned} H_0: \mu_d - \mu_{d_0} &= 0 \ H_1: \mu_d - \mu_{d_0} &< 0 \ H_1: \mu_d - \mu_{d_0} &> 0 \end{aligned}$$

Questions?

Example

- I want to assess whether a time-management course influenced levels of exam stress in students.
- I ask 50 students to take a self-report stress measure during their winter exams.
- At the beginning of semester 2 they take a time management course.
- I then assess their self-report stress in the summer exam block.
 - Let's assume for the sake of this example that I have been able to control the volume and difficulty of the exams the students take in each block.

Data

A tibble: 6 × 3 ## ID stress time <chr> <dbl> <fct> ## ## 1 ID1 14 t1 ## 2 ID2 7 t1 ## 3 ID3 8 t1 ## 4 ID4 8 t1 ## 5 ID5 7 t1 ## 6 ID6 7 t1

Hypotheses

- I elect to use a two-tailed test with alpha (α) of .01
- I want to be quite sure the intervention has worked and stress levels are different.
- So my hypotheses are:

$$egin{array}{ll} H_0:\mu_d=\mu_{d_0}\ H_1:\mu_d
eq\mu_{d_0} \end{array}$$

Questions?

Calculation

- Steps in my calculations:
 - \circ Calculate the difference scores for individuals d_i
 - $\circ~$ Calculate the mean of the difference scores $ar{d}$
 - \circ Calculate the s_d of the difference scores
 - $\circ \ {\rm Check} \, {\rm I} \, {\rm know} \, {\rm my} \, n$
 - $\circ~$ Calculate the standard error of mean difference $(SE_{ar{d}})$
- Use all this to calculate t

Data Organisation

- Our data is currently in what is referred to as long format.
 - All the scores are in one column, with two entries per participant.
- To calculate the d_i values, we will convert this to wide format.
 - Where there are two columns representing the score at time 1 and time 2
 - And a single row per person

Data Organisation

```
## # A tibble: 6 × 3
            t1
##
    ID
                 t2
## <chr> <dbl> <dbl>
## 1 ID1
            14
                  7
## 2 ID2
            7
                  7
               9
## 3 ID3
        8
            8 12
## 4 ID4
## 5 ID5
        7
               10
            7
                9
## 6 ID6
```

Calculation

```
exam_wide %>%
  mutate(dif = t1 - t2) %>%
  summarise(
    dbar = mean(dif),
    Sd = sd(dif),
    mu_d0 = 0,
    n = n()) %>%
  mutate(
    SEd = (Sd /sqrt(n)),
    t = ((dbar-mu_d0)/SEd)
    ) %>%
  kable(digits = 2) %>%
  kable(digits = 2) %>%
```

dbar	Sd	mu_d0	n	SEd	t
2.1	3.55	0	50	0.5	4.19

Calculation

	dbar	Sd	mu_d0	n	SEd	t
	2.1	3.55	0	50	0.5	4.19
t =	$rac{d}{SE}$	$rac{\mu_{d_0}}{Z_{ar{d}}}$ =	$=rac{2.1-}{rac{3.55}{\sqrt{50}}}$	0 =	$=\frac{2.1}{0.5}$	$\frac{1}{5} = 4$

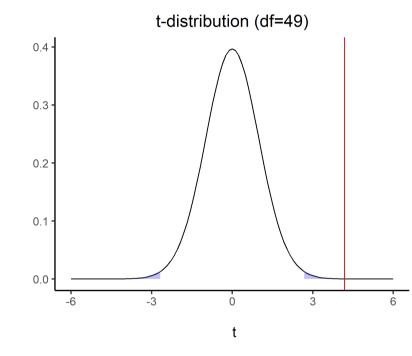
• So in our example
$$t = 4.20$$

• Note: When doing hand calculations there might be a small amount of rounding error when we compare to t calculated in R.

Is my test significant?

- So we have all the pieces we need:
 - t = 4.19• df = n - 1 = 50 - 1 = 49
 - Hypothesis to test (two-tailed)
 - $\circ \ \alpha = .01$
- So now all we need is the critical value from the associated *t*-distribution in order to make our decision.

Is my test significant?



```
tibble(
  LowerCrit = round(qt(0.005, 49),2),
  UpperCrit = round(qt(0.995, 49),2),
  Exactp = round(2*(1-pt(calc[[6]], 49)),5)
)
```

```
## # A tibble: 1 × 3
## LowerCrit UpperCrit Exactp
## <dbl> <dbl> <dbl> <dbl>
## 1 -2.68 2.68 0.00012
```

Is my test significant?

- So our critical value is 2.68
 - Our *t*-statistic (4.19) is larger than this
 - $\circ~$ So we reject the null hypothesis
- t(49) = 4.19, p < .01, two tailed.

```
• Wide Format Data
```

• Long Format Data

```
##
## Paired t-test
##
## data: exam_wide$t1 and exam_wide$t2
## t = 4.2, df = 49, p-value = 0.0001
## alternative hypothesis: true mean difference is not equal to 0
## 99 percent confidence interval:
## 0.7557 3.4443
## sample estimates:
## mean difference
## 2.1
```

Write-up

A paired-sample *t*-test was conducted in order to determine a if a statistically significant ($\alpha = .01$) mean difference in self-report stress was present, pre- and post-time management intervention in a sample of 50 undergraduate students. The pre-intervention mean score was higher (Mean = 9.72, SD = 2.19) than the post intervention score (Mean = 7.62, SD = 2.55). The difference was statistically significant (t(49) = 4.19, p < .01, two - tailed). We are 99% confident that post-intervention scores were between 0.76 and 3.44 points lower than pre-intervention scores. Thus, we reject the null hypothesis of no difference.

Questions?

Assumption checks summary

	Description	One-Sample t- test	Independent Sample t- test	Paired Sample t-test
Normality	Continuous variable (and difference) is normally distributed.	Yes (Population)	Yes (Both groups/ Difference)	Yes (Both groups/ Difference)
Tests:	Descriptive Statistics; Shapiro-Wilks Test; QQ- plot			
Independence	e Observations are sampled independently.		Yes (within and across groups)	Yes (within groups)
Tests:	None. Design issue.			
Homogeneity of variance	Population level standard deviation is the same in both groups.	NA	Yes	NA
Tests:	F-test			
Matched Pairs in data	For paired sample, each observation must have matched pair.	NA	NA	Yes
Tests:	None. Data structure issue.			

Assumptions

- Normality of the difference scores (d_i)
- Independence of observations within group/time
- Data are matched pairs (design)

Adding the difference scores

- Our assumptions concern the difference scores.
- We showed these earlier in our calculations.
- Here we will add them to exam_wide for ease.

```
exam_wide <- exam_wide %>%
  mutate(
    dif = t1 - t2)
```

Normality: Skew

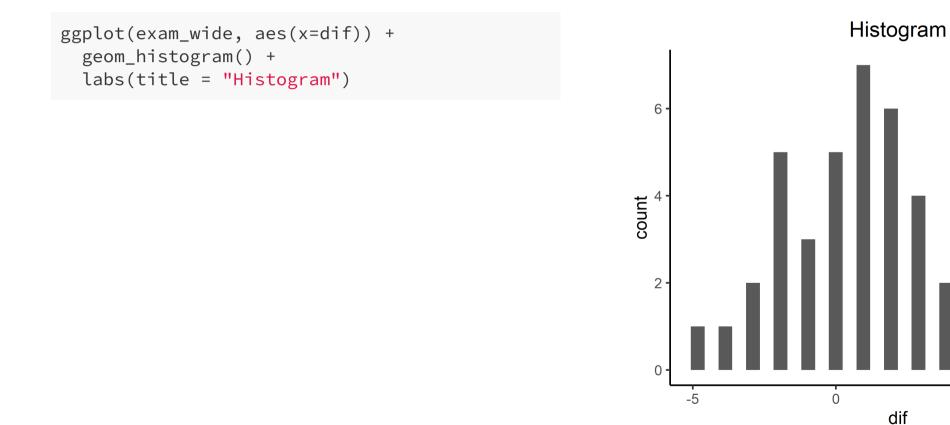
Verbal label	Magnitude of skew in absolute value
Generally not problematic	Skew < 1
Slight concern	1 > Skew < 2
Investigate impact	Skew > 2

```
library(psych)
exam_wide %>%
  summarise(
    skew = round(skew(dif),2)
)
```

```
## # A tibble: 1 × 1
## skew
## <dbl>
## 1 0.18
```

• Skew is low (< 1), so we would conclude that it is not problematic.

Normality: Histograms

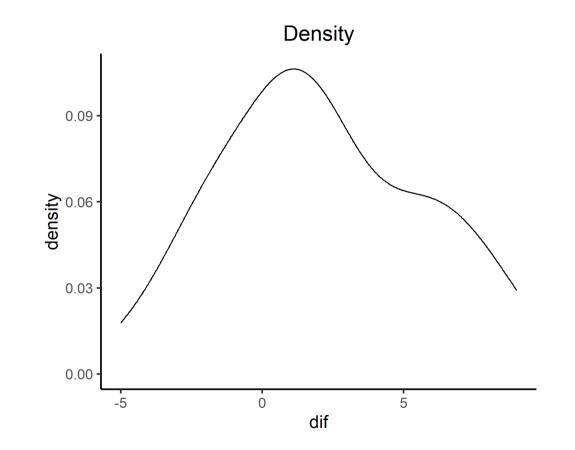


10

5

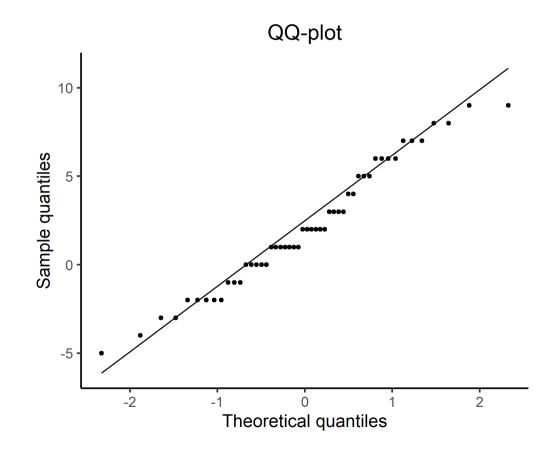
Normality: Density

```
ggplot(exam_wide, aes(x=dif)) +
geom_density() +
labs(title = "Density")
```



Normality: QQ-plots

```
ggplot(exam_wide, aes(sample = dif)) +
stat_qq() +
stat_qq_line() +
labs(title="QQ-plot",
        x = "Theoretical quantiles",
        y = "Sample quantiles")
```



Normality: Shapiro-Wilks in R

shapiro.test(exam_wide\$dif)

```
##
## Shapiro-Wilk normality test
##
## data: exam_wide$dif
## W = 0.97, p-value = 0.3
```

- Fail to reject the null, *p* = 0.30, which is > .05
- Normality of the differences is met.

Cohen's D: Paired t-test

• Paired-sample *t*-test:

$$D=rac{ar{d}\,-\mu_{d_0}}{s_d}$$

- \bar{d} = mean of the difference scores (d_i)
- μ_{d_0} is the hypothesised population difference in means in the null hypothesis
- s_d = standard deviation of the difference scores (d_i)
- So in our example:
 - $\circ \overline{d}$ = 2.1
 - $\circ \mu_{d_0}$ = 0
 - $s_d = 3.55$

$$D = \frac{2.1 - 0}{3.55} = 0.59$$

Cohen's D in R

• Wide Format Data

```
library(effectsize)
cohens_d(exam_wide$t1, exam_wide$t2,
        paired = TRUE,
        mu = 0,
        alternative = "two.sided",
        ci = 0.99)
```

##	Cohen's	d	99% CI
##			
##	0.59		[0.19, 0.99]

• Long Format Data

##	Cohen's d	0	99%	CI
##		 		
##	0.59	[0.19,	0.9	99]

Write up: Assumptions

The DV of our study, Stress, was measured on a continuous scale. Independence of observations can be assumed based on the study design. Data comprised matched pairs of observations as participants were assessed twice, pre- and post- time management course. The assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as well as statistically via a Shapiro-Wilks test. The QQplot did not show much deviation from the diagonal line, and the Shapiro-Wilks test suggested that the difference scores were normally distributed (W = 0.97, p = .30). This was inline with the histogram and density plots, which suggested that the difference in scores between the two assessment times was normally distributed (and where skew < 1). The size of the effect was found to be medium-large (D = 0.59).

Summary

- Today we have covered:
 - Basic structure of the paired-sample *t*-test
 - Calculations
 - Interpretation
 - Assumption checks
 - Effect size measures

Announcements

- Assessed report
 - If you have not joined a table group in the lab by the end of this week, you will not be eligible for the 10% contribution points
- Equation sheet
 - Paired t-test section updated
- Exam
 - Instead of pens, you should bring pencils (multiple) and an eraser
- Assumptions cheat sheet updated
 - Note that homogeneity of variance is not a required assumption for paired-samples *t*-test