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Learning Objectives
Understand when to use an paired sample -test
Understand the null hypothesis for an paired sample -test
Understand how to calculate the test statistic
Know how to conduct the test in R
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Topics for Today
Conceptual background and introduction to our example
Calculations and R-functions
Assumptions and effect size
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Paired T-Test Purpose & Data
The paired sample -test is used when we want to test the difference in mean scores for a sample comprising matched (or
naturally related) pairs.

Examples:

Pre-test and post-test score with an intervention administered between the time points
A participant experiences both experimental conditions (e.g., caffeine and placebo)

Data Requirements

A continuously measured variable.
A binary variable denoting pairing.
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t-statistic

 = mean of the individual difference scores  where 
 is the hypothesised population mean difference in the null hypothesis (which is usually assumed to be 0)

 = standard error of mean difference 

 = standard deviation of the difference scores 
 = sample size = number of matched pairs

Sampling distribution is a -distribution with  degrees of freedom

Note, this is just essentially a one sample test on the difference scores

t = where SEd̄ =
¯̄̄
d − μd0

SEd̄

sd

√n

d̄ (di) di = xi1 − xi2
μd0

SEd̄ (di)

sd (di)
n

t n − 1
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Two-tailed:

One-tailed

Two-tailed:

One-tailed

Hypotheses

H0 : μd = μd0

H1 : μd ≠ μd0

H0 : μd = μd0

H1 : μd < μd0

H1 : μd > μd0

H0 : μd − μd0
= 0

H1 : μd − μd0
≠ 0

H0 : μd − μd0 = 0

H1 : μd − μd0
< 0

H1 : μd − μd0
> 0
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Questions?
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Example
I want to assess whether a time-management course influenced levels of exam stress in students.

I ask 50 students to take a self-report stress measure during their winter exams.

At the beginning of semester 2 they take a time management course.

I then assess their self-report stress in the summer exam block.

Let's assume for the sake of this example that I have been able to control the volume and difficulty of the exams the
students take in each block.
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Data
## # A tibble: 6 × 3
##   ID    stress time 
##   <chr>  <dbl> <fct>
## 1 ID1       14 t1   
## 2 ID2        7 t1   
## 3 ID3        8 t1   
## 4 ID4        8 t1   
## 5 ID5        7 t1   
## 6 ID6        7 t1
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Hypotheses
I elect to use a two-tailed test with alpha  of .01

I want to be quite sure the intervention has worked and stress levels are different.

So my hypotheses are:

(α)

H0 : μd = μd0

H1 : μd ≠ μd0
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Questions?
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Calculation
Steps in my calculations:

Calculate the difference scores for individuals 
Calculate the mean of the difference scores 
Calculate the  of the difference scores
Check I know my 
Calculate the standard error of mean difference 

Use all this to calculate 

di

d̄

sd

n

(SEd̄ )

t
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Data Organisation
Our data is currently in what is referred to as long format.

All the scores are in one column, with two entries per participant.

To calculate the  values, we will convert this to wide format.

Where there are two columns representing the score at time 1 and time 2
And a single row per person

di

13 / 35



Data Organisation
exam_wide <- exam %>%
  pivot_wider(id_cols =  ID, 
              names_from = time, 
              values_from = stress)
head(exam_wide)

## # A tibble: 6 × 3
##   ID       t1    t2
##   <chr> <dbl> <dbl>
## 1 ID1      14     7
## 2 ID2       7     7
## 3 ID3       8     9
## 4 ID4       8    12
## 5 ID5       7    10
## 6 ID6       7     9
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Calculation
exam_wide %>%  
  mutate(dif = t1 - t2) %>%
  summarise(
    dbar = mean(dif),
    Sd = sd(dif),
    mu_d0 = 0,
    n = n()) %>%
  mutate(
    SEd = (Sd /sqrt(n)),
    t = ((dbar-mu_d0)/SEd)
    ) %>%
  kable(digits = 2) %>%
  kable_styling(full_width = FALSE)

dbar Sd mu_d0 n SEd t

2.1 3.55 0 50 0.5 4.19
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Calculation
dbar Sd mu_d0 n SEd t

2.1 3.55 0 50 0.5 4.19

So in our example 
Note: When doing hand calculations there might be a small amount of rounding error when we compare to  calculated in R.

t = = = = 4.20
d̄ − μd0

SEd̄

2.1 − 0
3.55

√50

2.1

0.5

t = 4.20
t
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Is my test significant?
So we have all the pieces we need:

 = 4.19
 =  = 50 - 1 = 49

Hypothesis to test (two-tailed)

So now all we need is the critical value from the associated -distribution in order to make our decision.

t

df n − 1

α = .01

t
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tibble(
  LowerCrit = round(qt(0.005, 49),2),
  UpperCrit = round(qt(0.995, 49),2),
  Exactp = round(2*(1-pt(calc[[6]], 49)),5)
)

## # A tibble: 1 × 3
##   LowerCrit UpperCrit  Exactp
##       <dbl>     <dbl>   <dbl>
## 1     -2.68      2.68 0.00012

Is my test significant?
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Is my test significant?
So our critical value is 2.68

Our -statistic (4.19) is larger than this
So we reject the null hypothesis

.

t

t(49) = 4.19, p < .01, two − tailed
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Wide Format Data

# two numeric columns
res_wide <- t.test(exam_wide$t1, exam_wide$t2, 
       paired = TRUE, 
       mu = 0,
       alternative = "two.sided",
       conf.level = 0.99)
res_wide

## 
##     Paired t-test
## 
## data:  exam_wide$t1 and exam_wide$t2
## t = 4.2, df = 49, p-value = 0.0001
## alternative hypothesis: true mean difference is not equal to 0
## 99 percent confidence interval:
##  0.7557 3.4443
## sample estimates:
## mean difference 
##             2.1

Long Format Data

#one numeric column, one binary column
res_long <- t.test(exam$stress ~ exam$time, 
       paired = TRUE, 
       mu = 0,
       alternative = "two.sided",
       conf.level = 0.99)
res_long
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Write-up
A paired-sample -test was conducted in order to determine a if a statistically significant  mean difference in self-report
stress was present, pre- and post-time management intervention in a sample of 50 undergraduate students. The pre-intervention
mean score was higher  than the post intervention score . The
difference was statistically significant . We are 99% confident that post-intervention scores
were between 0.76 and 3.44 points lower than pre-intervention scores. Thus, we reject the null hypothesis of no difference.

t (α = .01)

(Mean = 9.72,SD = 2.19) (Mean = 7.62,SD = 2.55)
(t(49) = 4.19, p <. 01, two − tailed)
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Questions?
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Assumption checks summary

Description One-Sample t-
test

Independent Sample t-
test

Paired Sample t-test

Normality Continuous variable (and difference) is normally
distributed.

Yes (Population) Yes (Both groups/
Difference)

Yes (Both groups/
Difference)

Tests: Descriptive Statistics; Shapiro-Wilks Test; QQ-
plot

Independence Observations are sampled independently. Yes Yes (within and across
groups)

Yes (within groups)

Tests: None. Design issue.

Homogeneity of
variance

Population level standard deviation is the same
in both groups.

NA Yes NA

Tests: F-test

Matched Pairs in data For paired sample, each observation must have
matched pair.

NA NA Yes

Tests: None. Data structure issue.
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Assumptions
Normality of the difference scores (  )
Independence of observations within group/time
Data are matched pairs (design)

di
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Adding the difference scores
Our assumptions concern the difference scores.
We showed these earlier in our calculations.
Here we will add them to exam_wide for ease.

exam_wide <- exam_wide %>%  
  mutate(
    dif = t1 - t2)
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Normality: Skew
Verbal label Magnitude of skew in absolute value

Generally not problematic | Skew | < 1

Slight concern 1 > | Skew | < 2

Investigate impact | Skew | > 2

library(psych)
exam_wide %>%
  summarise(
    skew = round(skew(dif),2)
  )

## # A tibble: 1 × 1
##    skew
##   <dbl>
## 1  0.18

Skew is low (< 1), so we would conclude that it is not problematic.
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ggplot(exam_wide, aes(x=dif)) +
  geom_histogram() + 
  labs(title = "Histogram")

Normality: Histograms

27 / 35



ggplot(exam_wide, aes(x=dif)) +
  geom_density() + 
  labs(title = "Density")

Normality: Density
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ggplot(exam_wide, aes(sample = dif)) +
  stat_qq() +
  stat_qq_line() + 
  labs(title="QQ-plot",
       x = "Theoretical quantiles",
       y = "Sample quantiles")

Normality: QQ-plots
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Normality: Shapiro-Wilks in R
shapiro.test(exam_wide$dif)

## 
##     Shapiro-Wilk normality test
## 
## data:  exam_wide$dif
## W = 0.97, p-value = 0.3

Fail to reject the null,  = 0.30, which is > .05

Normality of the differences is met.

p
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Cohen's D: Paired t-test
Paired-sample -test:

 = mean of the difference scores (  )
 is the hypothesised population difference in means in the null hypothesis

 = standard deviation of the difference scores (  )

So in our example:

 = 2.1
 = 0

 = 3.55

t

D =
d̄ − μd0

sd

d̄ di
μd0

sd di

d̄

μd0

sd

D = = 0.59
2.1 − 0

3.55
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Wide Format Data

library(effectsize)
cohens_d(exam_wide$t1, exam_wide$t2, 
       paired = TRUE, 
       mu = 0,
       alternative = "two.sided",
       ci = 0.99)

## Cohen's d |       99% CI
## ------------------------
## 0.59      | [0.19, 0.99]

Long Format Data

library(effectsize)
cohens_d(exam$stress ~ exam$time, 
       paired = TRUE, 
       mu = 0,
       alternative = "two.sided",
       ci = 0.99)

## Cohen's d |       99% CI
## ------------------------
## 0.59      | [0.19, 0.99]

Cohen's D in R
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Write up: Assumptions
The DV of our study, Stress, was measured on a continuous scale. Independence of observations can be assumed based on the
study design. Data comprised matched pairs of observations as participants were assessed twice, pre- and post- time
management course. The assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as well as
statistically via a Shapiro-Wilks test. The QQplot did not show much deviation from the diagonal line, and the Shapiro-Wilks test
suggested that the difference scores were normally distributed . This was inline with the histogram and
density plots, which suggested that the difference in scores between the two assessment times was normally distributed (and
where ). The size of the effect was found to be medium-large .

(W = 0.97, p = .30)

skew < 1 (D = 0.59)
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Summary
Today we have covered:

Basic structure of the paired-sample -test
Calculations
Interpretation
Assumption checks
Effect size measures

t
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Announcements
Assessed report

If you have not joined a table group in the lab by the end of this week, you will not be eligible for the 10% contribution
points

Equation sheet
Paired t-test section updated

Exam
Instead of pens, you should bring pencils (multiple) and an eraser

Assumptions cheat sheet - updated
Note that homogeneity of variance is not a required assumption for paired-samples -testt
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