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Learning Objectives

Understand when to use an independent samples t-test
Understand the null hypothesis for an independent sample t-test
Understand how to calculate the test statistic

Know how to conduct the testin R

2/43



Topics for Today

e Conceptual background and introduction to our example
e Calculations and R-functions
e Assumptions and effect size
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Independent T-Test Purpose & Data

The independent t-test is used when we want to test the difference in mean between two measured groups.

The groups must be independent:

o No person can be in both groups.

Examples:

o Treatment versus control group in an experimental study
o Married versus not married

Data Requirements:

o A continuously measured variable
o Abinary variable denoting groups

4/43



t-statistic

(Z1 — Z2) — do

b= SE,

T1—T2)
e Where

o Z1 and Ty are the sample means in each group
o dy is the hypothesised population difference in means in the null hypothesis (1 — p2)
o SEz gz, is standard error of the difference

e Sampling distribution is a t-distribution with n — 2 degrees of freedom, where n =n; + ns.
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Standard Error Difference

e First calculate the pooled standard deviation.
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Hypotheses

e Two-tailed: e Two-tailed:
Hy : p1 = po Ho:pr—p2=0
Hy:pa # po Hy:tpr—p2 #0
e One-tailed: e One-tailed:
Hy @ p1 = po Ho:p1—p2=0
Hy:py < po Hy:pp—pp <0
H1:M1>,U,2 H1:/.L1—/,L2>0
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Questions?
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Example

e Example taken from Howell, D.C. (2010). Statistical Methods for Psychology, 7th Edition. Belmont, CA: Wadsworth Cengage
Learning.

e Data from Aronson, Lustina, Good, Keough , Steele and Brown (1998). Experiment on stereotype threat.

o Two independent groups college students (n=12 control; n=11 threat condition).
o Both samples excel in maths.
o Threat group told certain students usually do better in the test
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Data

## # A tibble: 23 x 2
Group Score

##
##
##
##
##
##
##
##
##
##

O© 0o ~NO U~ WNKH

H H
H H
[
o

## # ..
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with 13 more rows
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Visualizing data

e We spoke earlier in the course about the importance of visualizing our data.
e Here, we want to show the mean and distribution of scores by group.

e Sowewanta.....
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Visualizing data

ggplot(data = threat,
aes(x = Group, Yy = Score, fill = Group
geom_boxplot() +

geom_jitter(width = 0.1) 10.0 1

‘ 2
o Group
8 27 ‘ Threat
@ ‘ Control
5.04

Threat Control

Group
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Hypotheses

e My hypothesis is that the threat group will perform worse than the control group.
o Thisis a one-tailed hypothesis.

e Andlwilluseana = .05
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Questions?
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Calculation

e Stepsin my calculations:

Calculate the sample mean in both groups 1 and Z».
Calculate the pooled SD (s,).

Check I know my n.
Calculate the standard error (SE).

O
o
o
o

e Use all this to calculate t.
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Calculation

threat %>%
group_by (Group) %>%
summarise (
Mean = round(mean(Score),2),
SD = round(sd(Score),2),
n = n()
) %>%
kable(digits = 2) %>%
kable_styling(full_width = FALSE)

Group Mean SD n
Threat 5.27 1.27 11
Control 9.58 1.51 12
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Calculation

Group Mean SD n
Threat 5.27 1.27 11
Control 9.58 1.51 12

e Calculate pooled standard deviation

(n1 —1)s? + (ng — 1)s3 (11 — 1) * 1.27% 4 (12 — 1) * 1.51? 10 % 1.27° + 11 % 1.51° 41.21 1.401
S, — — — — - = .
11412 -2 11 +12 -2 1

P ni + ng — 2

e Calculate the standard error.

1 1 i1
SE(s, sy = Spy| — + — = 1401y — + —— = 1.401 # 0.417 = 0.584
@1-2) = Spy [ - - 1 12 *
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Calculation

Steps in my calculations:

o Calculate the sample mean in both groups - Threat (Z; = 5.27), Control (Z3 = 9.58).
Calculate the pooled SD (s, = 1.401).

o Check | know my n - Threat (n; = 11) and Control (ng = 12) -n = 23.

o Calculate the standard error (SE = 0.584).
Use all this to calculate £.

O

(Z1 — %) —0 527 —9.58

t =
SE(J_:l—:E2) 0.584

= —7.38

Soinourexamplet = —7.38
Note: When doing hand calculations there might be a small amount of rounding error when we compare to ¢ calculated in R.
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s our test significant?

e We have all the pieces we need:

Degrees of freedom=n —2 = (124 11) -2 =23 —2 =21
We have our t-statistic (-7.38)

Hypothesis to test (one-tailed)

a level (.05).

O
o
o
o

e So now all we need is the critical value from the associated ¢-distribution in order to make our decision.
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s our test significant?

0.4 1

0.3 1

0.2 1

0.1 1

0.0 1

t-distribution (df=21); t-statistic (-7.38; red line)

tibble(

)

##
##
##
##

LowerCrit = round(qt(0.05, 21),2),
Exactp = 1-pt(7.3817, 21)

# A tibble: 1 x 2
LowerCrit Exactp
<dbl> <dbl>
1 -1.72 0.000000146
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Is my test significant?

e Soour critical valueis-1.72

o Qur t-statistic (-7.38) is larger than this
o So we reject the null hypothesis

e t(21) = —7.38,p < .05, 0ne — tailed.
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Our Test: In R

res <- t.test(threat$Score ~ threat$Group,
alternative = "less",
mu = 0,
var.equal = TRUE,
conf.level = 0.95)
res

##

#i Two Sample t-test

##

## data: threat$SScore by threat$Group

## t = -7.4, df = 21, p-value = le-07

## alternative hypothesis: true difference in means between group Threat and group Control is less than 0
## 95 percent confidence interval:

## -Inf -3.306

## sample estimates:

## mean in group Threat mean in group Control
#it 5.273 9.583
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Write up

An independent sample ¢-test was used to determine whether the average maths score of the stereotype threat group (n = 11)
was significantly lower (o = .05) than the control group (n = 12). There was a significant difference in test score between the
control (Mean = 9.58; SD = 1.51) and threat (Mean = 5.27; SD = 1.27) groups, where the scores were significantly lower
in the threat group (¢(21)=-7.38, p < .05, one — tailed). Therefore, we can reject the null hypothesis. The direction of difference
supports our directional hypothesis and indicates that the threat group performed more poorly than the control group.
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Questions?
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Assumption checks summary

Normality

Tests:

Independence

Tests:

Homogeneity of
variance

Tests:
Matched Pairs in data

Tests:

Description

Continuous variable (and difference) is normally
distributed.

Descriptive Statistics; Shapiro-Wilks Test; QQ-
plot

Observations are sampled independently.

None. Design issue.

Population level standard deviation is the same
in both groups.

F-test

For paired sample, each observation must have
matched pair.

None. Data structure issue.

One-Sample t-
test

Yes (Population)

Yes

NA

NA

Independent Sample t-
test

Yes (Both groups/
Difference)

Yes (within and across
groups)

Yes

NA

Paired Sample t-test

Yes (Both groups/
Difference)

Yes (within groups)

NA

Yes
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Assumptions

e The independent sample t-test has the following assumptions:
o Independence of observations within and across groups.
o Continuous variable is approximately normally distribution within both groups.
= Equivalently, that the difference in means is normally distributed.
o Homogeneity of variance across groups.
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Assumption checks: Normality

e Descriptive statistics:
o Skew:
= Below are some rough guidelines on how to interpret skew.
= No strict cuts for skew - these are loose guidelines.

Verbal label Magnitude of skew in absolute value
Generally not problematic | Skew |<1
Slight concern 1>|Skew |<2

Investigate impact | Skew |>2
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Skew

library(psych)
threat %>%

##
##
##
##
##

group_by (Group) %>%

summarise (
skew = round(skew(Score),2)

# A tibble: 2 x 2
Group skew
<fct> <dbl>

1 Threat -0.2

2 Control -0.07
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Histograms

ggplot(threat, aes(x=Score)) +

Histogram
geom_histogram() + Threat Control
facet_wrap(~ Group) + 5
labs(title = "Histogram")

2-
I
>
o
(&)
0-
25 50 75 100 1235 50 75 100 125
Score
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Density

ggplot(threat, aes(x=Score)) + Density
geom_density() + Threat
facet_wrap(~ Group) +
labs(title = "Density")

Control

0.2 1

density

0.1 1

0.0 1

50 75 100 50 75 100
Score
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Assumption checks: Normality

e QQ-plots:
o Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution).
o Quantile = the percent of points falling below a given value.
o For a normality check, we can compare our own data to data drawn from a normal distribution
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QQ-plots

ggplot(data = threat, QCﬁQot |
aes(sample = Score, colour = Group)) + gg?rgsfeedrmzyd::: it to the line the more normally

geom_qq () +
geom_qq_Lline() +
labs(title="QQ-plot",

12.51

subtitle="The closer the data fit to th« §100
x = "Theoretical quantiles", < Group
o -
y = "Sample quantiles") S Threat
s —=— Control
> &
wn
50

R 0 1
Theoretical quantiles

e This looks reasonable in both groups
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Assumption checks: Normality

e Shapiro-Wilks test:
o Checks properties of the observed data against properties we would expected from normally distributed data.
o Statistical test of normality.
o Hy:data=anormaldistribution.
o p-value < a =reject the null, data are not normal.
m Sensitive to n as all p-values will be.
= |nvery large n, normality should also be checked with QQ-plots alongside statistical test.
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Shapiro-Wilks in R

threat %>%
filter(Group == "Control") %>%
pull(Score) %>%

shapiro.test()

##

#H Shapiro-Wilk normality test
#H#

## data:

## W = 0.96, p-value = 0.7

W = 0.96,p = .70

thr <- threat %>%
filter(Group == "Threat") %>%
select(Score)
shapiro.test(thr$Score)

##

#H Shapiro-Wilk normality test
##

## data: thr$Score

## W = 0.94, p-value = 0.5

W = 0.94,p = .50
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Assumption checks: Homogeneity of variance

e The F-testis a test that compares the variances of two groups.
o This testis preferable for t-test.
o Hjy: Population variances are equal.
o p-value < a =reject the null, the variances differ across groups.
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F-test R

var.test(threat$Score ~ threat$Group, ratio = 1)

H#

## F test to compare two variances

##

## data: threat$Score by threat$Group

## F = 0.71, num df = 10, denom df = 11, p-value = 0.6
## alternative hypothesis: true ratio of variances 1is not equal to 1
## 95 percent confidence 1interval:

## 0.2026 2.6181

## sample estimates:

## ratio of variances

H# 0.7144

e Why ratio = 17

2
.H()IO'%:US QHO;U—;:
. 2 2 o
OH]_.O-I#O-z 2 0'%
OH12—27é1
P

36/43



Violation of homogeneity of variance

¢ |f the variances differ, we can use a Welch test.
e Conceptually very similar, but we do not use a pooled standard deviation.

o As such our estimate of the SE of the difference changes
o As do our degrees of freedom
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Welch test

If the variances differ, we can use a Welch test.

Test statistic = same:

t
SE(ITH—@)
e SE calculation:
2 2
51 9
SE(Q_:l—.’fz) — n_l + n_2
e And degrees of freedom (don't worry, not tested)
(5 + 2
df — ) 1 2 -
(77)? (75)?
n1—1 n2—1

38/43



Welch: InR

t.test(threat$Score ~ threat$Group,
alternative = "less",
mu = 0,
var.equal = FALSE, #default, only here to highlight difference
conf.level = 0.95)

##

#i Welch Two Sample t-test

##

## data: threat$SScore by threat$Group

## t = -7.4, df = 21, p-value = le-07

## alternative hypothesis: true difference in means between group Threat and group Control is less than 0
## 95 percent confidence interval:

## -Inf -3.313

## sample estimates:

## mean in group Threat mean in group Control
#it 5.273 9.583
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Cohen's D: Independent samples t-test

e Independent-sample t-test (if you do have equality of variances):

D (Z1 — Z2) — do

Sp
® T1=meangroupl
® Ty =mean group 2
* J is the hypothesised population difference in means in the null hypothesis (u1 — p2)
e s, =pooled standard deviation

e Independent-sample t-test (if you do not have equality of variances):
o Calculate via cohens_d () function from effectsize packagein R - do not calculate by hand.

e Recall the common "cut-offs" for D-scores:

Verbal label Magnitude of D in absolute value
Small (or weak) < 0.20
Medium (or moderate) ~ 0.50
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Cohen'sDiInR

library(effectsize)
cohens_d(threat$Score ~ threat$Group,
mu = 0,
alternative = "less",

var.equal = TRUE,
conf.level = 0.95)

## Cohen's d | 95% CI
## ———————
## -3.08 | [-Inf, -2.02]
##

## - Estimated using pooled SD.
## - One-sided CIs: lower bound fixed at [-Inf].
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Write up: Assumptions

The DV of our study, Score, was measured on a continuous scale, and data were independent (participants belonged to one of two
groups - Control or Threat). The assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as
well as statistically via a Shapiro-Wilks test. The QQplots did not show much deviation from the diagonal line in either group, and
the Shapiro-Wilks test for both the Control (W = 0.96, p = .70) and Threat (W = 0.94, p = .50) conditions suggested that the
samples came from a population that was normally distributed. This was inline with the histogram and density plots for each
group, which suggested that Score was normally distributed (and where skew < 1). Based on the results of our F'-test, there was
no significant difference between the two population variances (F'(10,11) = 0.71, p = .60). The size of the effect was found to

be large (D = —3.08).
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Summary

e Today we have covered:
o Basic structure of the independent-sample ¢-test
o Calculations
o [nterpretation
o Assumption checks
o Effect size measures
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