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Learning Objectives
Understand when to use an independent samples -test
Understand the null hypothesis for an independent sample -test
Understand how to calculate the test statistic
Know how to conduct the test in R
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Topics for Today
Conceptual background and introduction to our example
Calculations and R-functions
Assumptions and e�ect size
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Independent T-Test Purpose & Data
The independent -test is used when we want to test the di�erence in mean between two measured groups.

The groups must be independent:

No person can be in both groups.

Examples:

Treatment versus control group in an experimental study
Married versus not married

Data Requirements:

A continuously measured variable
A binary variable denoting groups
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t-statistic

Where

 and  are the sample means in each group
 is the hypothesised population di�erence in means in the null hypothesis 

 is standard error of the di�erence

Sampling distribution is a -distribution with  degrees of freedom, where  = .

t =
(x̄1 − x̄2) − δ0

SE(x̄1−x̄2)

x̄1 x̄2

δ0 (μ1 − μ2)
SE(x̄1−x̄2)

t n − 2 n n1 + n2
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Standard Error Di�erence
First calculate the pooled standard deviation.

Then use this to calculate the SE of the di�erence.

sp = √ (n1 − 1)s2
1 + (n2 − 1)s2

2

n1 + n2 − 2

SE(x̄1−x̄2) = sp√ +
1

n1

1

n2
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Two-tailed:

One-tailed:

Two-tailed:

One-tailed:

Hypotheses

H0 : μ1 = μ2

H1 : μ1 ≠ μ2

H0 : μ1 = μ2

H1 : μ1 < μ2

H1 : μ1 > μ2

H0 : μ1 − μ2 = 0

H1 : μ1 − μ2 ≠ 0

H0 : μ1 − μ2 = 0

H1 : μ1 − μ2 < 0

H1 : μ1 − μ2 > 0
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Questions?
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Example
Example taken from Howell, D.C. (2010). Statistical Methods for Psychology, 7th Edition. Belmont, CA: Wadsworth Cengage
Learning.

Data from Aronson, Lustina , Good, Keough , Steele and Brown (1998). Experiment on stereotype threat.

Two independent groups college students (n=12 control; n=11 threat condition).
Both samples excel in maths.
Threat group told certain students usually do better in the test
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Data
## # A tibble: 23 × 2
##    Group  Score
##    <fct>  <dbl>
##  1 Threat     7
##  2 Threat     5
##  3 Threat     6
##  4 Threat     5
##  5 Threat     6
##  6 Threat     5
##  7 Threat     4
##  8 Threat     7
##  9 Threat     4
## 10 Threat     3
## # … with 13 more rows
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Visualizing data
We spoke earlier in the course about the importance of visualizing our data.

Here, we want to show the mean and distribution of scores by group.

So we want a.....
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ggplot(data = threat, 
       aes(x = Group,  y = Score, fill = Group)
  geom_boxplot() + 
  geom_jitter(width = 0.1)

Visualizing data
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Hypotheses
My hypothesis is that the threat group will perform worse than the control group.

This is a one-tailed hypothesis.

And I will use an α = .05
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Questions?
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Calculation
Steps in my calculations:

Calculate the sample mean in both groups  and .
Calculate the pooled SD .
Check I know my .
Calculate the standard error .

Use all this to calculate .

x̄1 x̄2

(sp)
n

(SE)

t

15 / 43



Calculation
threat %>%
  group_by(Group) %>%
  summarise(
    Mean = round(mean(Score),2),
    SD = round(sd(Score),2),
    n = n()
  ) %>%
  kable(digits = 2) %>%
  kable_styling(full_width = FALSE)

Group Mean SD n

Threat 5.27 1.27 11

Control 9.58 1.51 12
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Calculation
Group Mean SD n

Threat 5.27 1.27 11

Control 9.58 1.51 12

Calculate pooled standard deviation

Calculate the standard error.

sp = √ = √ = √ = √ = 1.401
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

(11 − 1) ∗ 1.272 + (12 − 1) ∗ 1.512

11 + 12 − 2

10 ∗ 1.272 + 11 ∗ 1.512

11 + 12 − 2

41.21

21

SE(x̄1−x̄2) = sp√ + = 1.401√ + = 1.401 ∗ 0.417 = 0.584
1

n1

1

n2

1

11

1

12
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Calculation
Steps in my calculations:

Calculate the sample mean in both groups - Threat , Control .
Calculate the pooled SD .
Check I know my n - Threat  and Control  - .
Calculate the standard error .

Use all this to calculate .

So in our example 
Note: When doing hand calculations there might be a small amount of rounding error when we compare to  calculated in R.

(x̄1 = 5.27) (x̄2 = 9.58)
(sp = 1.401)

(n1 = 11) (n2 = 12) n = 23
(SE = 0.584)

t

t = = = −7.38
(x̄1 − x̄2) − 0

SE(x̄1−x̄2)

5.27 − 9.58

0.584

t = −7.38
t
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Is our test significant?
We have all the pieces we need:

Degrees of freedom = 
We have our -statistic (-7.38)
Hypothesis to test (one-tailed)

 level (.05).

So now all we need is the critical value from the associated -distribution in order to make our decision.

n − 2 = (12 + 11) − 2 = 23 − 2 = 21
t

α

t
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tibble(
  LowerCrit = round(qt(0.05, 21),2),
  Exactp = 1-pt(7.3817, 21)
)

## # A tibble: 1 × 2
##   LowerCrit      Exactp
##       <dbl>       <dbl>
## 1     -1.72 0.000000146

Is our test significant?
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Is my test significant?
So our critical value is -1.72

Our -statistic (-7.38) is larger than this
So we reject the null hypothesis

.

t

t(21) = −7.38, p < .05, one − tailed
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Our Test: In R
res <- t.test(threat$Score ~ threat$Group, 
       alternative = "less",
       mu = 0,
       var.equal = TRUE,
       conf.level = 0.95)
res

## 
##     Two Sample t-test
## 
## data:  threat$Score by threat$Group
## t = -7.4, df = 21, p-value = 1e-07
## alternative hypothesis: true difference in means between group Threat and group Control is less than 0
## 95 percent confidence interval:
##    -Inf -3.306
## sample estimates:
##  mean in group Threat mean in group Control 
##                 5.273                 9.583
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Write up
An independent sample -test was used to determine whether the average maths score of the stereotype threat group 
was significantly lower  than the control group . There was a significant di�erence in test score between the
control  and threat  groups, where the scores were significantly lower
in the threat group ( (21)=-7.38, . Therefore, we can reject the null hypothesis. The direction of di�erence
supports our directional hypothesis and indicates that the threat group performed more poorly than the control group.

t (n = 11)
(α = .05) (n = 12)

(Mean = 9.58;SD = 1.51) (Mean = 5.27;SD = 1.27)
t p < .05, one − tailed)
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Questions?
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Assumption checks summary

Description One-Sample t-
test

Independent Sample t-
test

Paired Sample t-test

Normality Continuous variable (and di�erence) is normally
distributed.

Yes (Population) Yes (Both groups/
Di�erence)

Yes (Both groups/
Di�erence)

Tests: Descriptive Statistics; Shapiro-Wilks Test; QQ-
plot

Independence Observations are sampled independently. Yes Yes (within and across
groups)

Yes (within groups)

Tests: None. Design issue.

Homogeneity of
variance

Population level standard deviation is the same
in both groups.

NA Yes NA

Tests: F-test

Matched Pairs in data For paired sample, each observation must have
matched pair.

NA NA Yes

Tests: None. Data structure issue.
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Assumptions
The independent sample -test has the following assumptions:

Independence of observations within and across groups.
Continuous variable is approximately normally distribution within both groups.

Equivalently, that the di�erence in means is normally distributed.
Homogeneity of variance across groups.

t
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Assumption checks: Normality
Descriptive statistics:

Skew:
Below are some rough guidelines on how to interpret skew.
No strict cuts for skew - these are loose guidelines.

Verbal label Magnitude of skew in absolute value

Generally not problematic | Skew | < 1

Slight concern 1 > | Skew | < 2

Investigate impact | Skew | > 2
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Skew
library(psych)
threat %>%
  group_by(Group) %>%
    summarise(
      skew = round(skew(Score),2)
  )

## # A tibble: 2 × 2
##   Group    skew
##   <fct>   <dbl>
## 1 Threat  -0.2 
## 2 Control -0.07
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ggplot(threat, aes(x=Score)) +
  geom_histogram() +
  facet_wrap(~ Group)  + 
  labs(title = "Histogram")

Histograms

29 / 43



ggplot(threat, aes(x=Score)) +
  geom_density() +
  facet_wrap(~ Group) + 
  labs(title = "Density")

Density
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Assumption checks: Normality
QQ-plots:

Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution).
Quantile = the percent of points falling below a given value.
For a normality check, we can compare our own data to data drawn from a normal distribution
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ggplot(data = threat, 
       aes(sample = Score, colour = Group)) +
  geom_qq() +
  geom_qq_line() +
      labs(title="QQ-plot", 
       subtitle="The closer the data fit to the
       x = "Theoretical quantiles",
       y = "Sample quantiles")

QQ-plots

This looks reasonable in both groups
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Assumption checks: Normality
Shapiro-Wilks test:

Checks properties of the observed data against properties we would expected from normally distributed data.
Statistical test of normality.

: data = a normal distribution.
-value  = reject the null, data are not normal.

Sensitive to  as all -values will be.
In very large , normality should also be checked with QQ-plots alongside statistical test.

H0

p < α

n p

n
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threat %>% 
  filter(Group == "Control") %>% 
  pull(Score) %>%
shapiro.test()

## 
##     Shapiro-Wilk normality test
## 
## data:  .
## W = 0.96, p-value = 0.7

thr <- threat %>% 
  filter(Group == "Threat") %>% 
  select(Score)
shapiro.test(thr$Score)

## 
##     Shapiro-Wilk normality test
## 
## data:  thr$Score
## W = 0.94, p-value = 0.5

Shapiro-Wilks in R

W = 0.96, p = .70 W = 0.94, p = .50
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Assumption checks: Homogeneity of variance
The -test is a test that compares the variances of two groups.

This test is preferable for -test.
: Population variances are equal.

-value  = reject the null, the variances di�er across groups.

F

t

H0

p < α
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F-test R
var.test(threat$Score ~ threat$Group, ratio = 1)

## 
##     F test to compare two variances
## 
## data:  threat$Score by threat$Group
## F = 0.71, num df = 10, denom df = 11, p-value = 0.6
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2026 2.6181
## sample estimates:
## ratio of variances 
##             0.7144

Why ratio = 1?

H0 : σ
2
1 = σ

2
2

H1 : σ
2
1 ≠ σ

2
2

H0 : = 1
σ2

1

σ2
2

H1 : ≠ 1
σ2

1

σ
2
2
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Violation of homogeneity of variance
If the variances di�er, we can use a Welch test.

Conceptually very similar, but we do not use a pooled standard deviation.

As such our estimate of the SE of the di�erence changes
As do our degrees of freedom
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Welch test
If the variances di�er, we can use a Welch test.

Test statistic = same:

SE calculation:

And degrees of freedom (don't worry, not tested)

t =
(x̄1 − x̄2) − δ0

SE(x̄1−x̄2)

SE(x̄1−x̄2) = √ +
s2

1

n1

s2
2

n2

df =
( + )2s2

1

n1

s2
2

n2

+
( )2
s2
1

n1

n1−1

( )2
s2
2

n2

n2−1
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Welch: In R
t.test(threat$Score ~ threat$Group, 
       alternative = "less",
       mu = 0,
       var.equal = FALSE, #default, only here to highlight difference
       conf.level = 0.95)

## 
##     Welch Two Sample t-test
## 
## data:  threat$Score by threat$Group
## t = -7.4, df = 21, p-value = 1e-07
## alternative hypothesis: true difference in means between group Threat and group Control is less than 0
## 95 percent confidence interval:
##    -Inf -3.313
## sample estimates:
##  mean in group Threat mean in group Control 
##                 5.273                 9.583
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Cohen's D: Independent samples t-test
Independent-sample -test (if you do have equality of variances):

 = mean group 1
 = mean group 2
 is the hypothesised population di�erence in means in the null hypothesis 
 = pooled standard deviation

Independent-sample -test (if you do not have equality of variances):

Calculate via cohens_d() function from effectsize package in R - do not calculate by hand.

Recall the common "cut-o�s" for -scores:

Verbal label Magnitude of  in absolute value

Small (or weak)

Medium (or moderate)

Large (or strong)

t

D =
(x̄1 − x̄2) − δ0

sp

x̄1

x̄2

δ0 (μ1 − μ2)
sp

t

D

D

≤ 0.20

≈ 0.50

≥ 0.80
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Cohen's D in R
library(effectsize)
cohens_d(threat$Score ~ threat$Group, 
         mu = 0, 
         alternative = "less", 
         var.equal = TRUE, 
         conf.level = 0.95)

## Cohen's d |        95% CI
## -------------------------
## -3.08     | [-Inf, -2.02]
## 
## - Estimated using pooled SD.
## - One-sided CIs: lower bound fixed at [-Inf].
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Write up: Assumptions
The DV of our study, Score, was measured on a continuous scale, and data were independent (participants belonged to one of two
groups - Control or Threat). The assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as
well as statistically via a Shapiro-Wilks test. The QQplots did not show much deviation from the diagonal line in either group, and
the Shapiro-Wilks test for both the Control  and Threat  conditions suggested that the
samples came from a population that was normally distributed. This was inline with the histogram and density plots for each
group, which suggested that Score was normally distributed (and where ). Based on the results of our -test, there was
no significant di�erence between the two population variances . The size of the e�ect was found to
be large .

(W = 0.96, p = .70) (W = 0.94, p = .50)

skew < 1 F

(F(10, 11) = 0.71, p = .60)
(D = −3.08)
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Summary
Today we have covered:

Basic structure of the independent-sample -test
Calculations
Interpretation
Assumption checks
E�ect size measures
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