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Learning Objectives
Understand when to use a one sample -test
Understand the null hypothesis for a one sample -test
Understand how to calculate the test statistic
Know how to conduct the test in R
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Topics for Today
Introduce the three types of -test
One-sample -test example
Inferential tests for the one-sample -test
Assumptions and effect size
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T-Test: Purpose
-tests (generally) concern testing the difference between two means.

Another way to state this is that the scores of two groups being tested are from the sample underlying population
distribution.

One-sample -tests compare the mean in a sample to a known mean.

Independent -tests compare the means of two independent samples.

Paired sample -tests compare the mean from a single sample at two points in time (repeated measurements)

We will look in more detail at these tests over the next three weeks.

But let's start by thinking a little bit about the logic -tests.
For the next few slides, have a bit of paper and a pen handy.
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Write down whether you think these means (two lines)
are different. Write either:

Yes
No
It depends

Are these means different?
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Write down whether you think these means (two lines)
are different. Write either:

Yes
No
It depends

What about these?
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Differences in means
OK, now please write down:

1. Why you wrote the answers you did?
2. If you wrote, "It depends", why can we not tell whether they are different or not?
3. What else might we want to know in order to know whether not the group means could be thought of as coming from the

same distribution?
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All the information
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All the information
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Questions?

10 / 48



t-statistic
Recall when talking about hypothesis testing:

We calculate a test statistic that represents our question.
We compare our sample value to the sampling distribution under the null

Here the test statistic is a -statistic.t
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t-statistic

The numerator = a difference in means
The denominator = a estimate of variability

where
 = sample estimated standard deviation of 
 = sample size

 = a standardized difference in means

t = where SEx̄ =
x̄ − μ0

SEx̄
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Data Requirements: One-sample t-test
A continuous variable

Remember we are calculating means

A known mean that we wish to compare our sample to

A sample of data from which we calculate the sample mean
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Example
Suppose I want to know whether the retirement age of Professors at my University is the same as the national average.

The national average age of retirement for Prof's is 65.

So I look at the age of the last 40 Prof's that have retired at Edinburgh and compare against this value.
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Data
## # A tibble: 40 × 2
##    ID       Age
##    <chr>  <dbl>
##  1 Prof1     76
##  2 Prof2     66
##  3 Prof3     58
##  4 Prof4     68
##  5 Prof5     79
##  6 Prof6     74
##  7 Prof7     75
##  8 Prof8     50
##  9 Prof9     69
## 10 Prof10    70
## # … with 30 more rows
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Hypotheses
When we are testing whether the population mean  is equal to a hypothesized value .

Note this is identical to saying:

(μ) (μ0)

H0 : μ = μ0

H0 : μ − μ0 = 0
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Alternative Hypotheses
Two-tailed:

One-tailed:

H0 : μ = μ0 vs H1 : μ ≠ μ0

H0 : μ = μ0

H1 : μ < μ0

H1 : μ > μ0
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Hypotheses
Let's assume a priori we have no idea of the ages the Prof's retired.

So I specify a two-tailed hypothesis with  = .05.

So I am simply asking, does my mean differ from the known mean.

α
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Calculation

Steps to calculate :
Calculate the sample mean .
Calculate the standard error of the mean .

Calculate the sample standard deviation .
Check I know my sample size .
Use all this to calculate .

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n

t
(x̄)

( )s

√n

(s)
(n)

t
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Calculation

dat %>%
  summarise(
    mu0 = 65,
    xbar = mean(Age),
    s = sd(Age),
    n = n()
  ) %>%
  mutate(
    se = s/sqrt(n)
  )  %>%
  kable(digits = 2) %>%
  kable_styling(full_width = FALSE)

mu0 xbar s n se

65 66.3 10.01 40 1.58

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n
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Calculation
mu0 xbar s n se

65 66.3 10.01 40 1.58

So in our example 

t = = = = 0.82
x̄ − μ0

s

√n

66.30 − 65.00
10.01

√40.00

1.30

1.58

t = 0.82
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Questions?
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Is our test significant?
The sampling distribution for -statistics is a -distribution.

The -distribution is a continuous probability distribution very similar to the normal distribution.

Key parameter = degrees of freedom (df)
df are a function of .
As  increases (and thus as df increases), the -distribution approaches a normal distribution.

For a one sample -test, we compare our test statistic to a -distribution with n-1 df.
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Is our test significant?
So we have all the pieces we need:

Degrees of freedom = -1 = 40-1 = 39
We have our -statistic (0.82)
Hypothesis to test (two-tailed)

 level (.05).

So now all we need is the critical value from the associated -distribution in order to make our decision.
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tibble(
  LowerCrit = round(qt(0.025, 39),2),
  UpperCrit = round(qt(0.975, 39),2),
)

## # A tibble: 1 × 2
##   LowerCrit UpperCrit
##       <dbl>     <dbl>
## 1     -2.02      2.02

Is our test significant?
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Is our test significant?
So our critical value is 2.02

Our -statistic (0.82) is closer to 0 than this.
So we fail to reject the null hypothesis.

, two-tailed.

t

t(39) = 0.82, p > .05
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## # A tibble: 1 × 1
##   Exactp
##    <dbl>
## 1   0.42

Exact p-values
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In R: Types of Hypothesis
alternative = refers to the direction of our alternative hypothesis 

: alternative="less"
Our Edinburgh Prof's have a lower retirement age than the national average

: alternative="greater"
Our Edinburgh Prof's have a higher retirement age than the national average

: alternative="two-sided"
Our Edinburgh Prof's have a different retirement age than the national average

t.test(dat$Age, mu=65, alternative="______")

(H1)
μ < μ0

μ > μ0

μ ≠ μ0
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Our test: In R
t.test(dat$Age, mu=65, alternative="two.sided")

## 
##     One Sample t-test
## 
## data:  dat$Age
## t = 0.82, df = 39, p-value = 0.4
## alternative hypothesis: true mean is not equal to 65
## 95 percent confidence interval:
##  63.1 69.5
## sample estimates:
## mean of x 
##      66.3
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Write up
A one-sample -test was conducted to determine there was a statistically significant  mean difference between the
average retirement age of Professors and the age at retirement of a sample of 40 Edinburgh Professors. Although the sample had a
higher average age of retirement (Mean=66.3, SD=10.01) than the population (Mean = 65), this difference was not statistically
significant .

t (α = .05)

(t(39) = 0.82, p > .05, two − tailed)
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Questions?
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Assumption checks summary

Description One-Sample t-
test

Independent Sample t-
test

Paired Sample t-test

Normality Continuous variable (and difference) is normally
distributed.

Yes (Population) Yes (Both groups/
Difference)

Yes (Both groups/
Difference)

Tests: Descriptive Statistics; Shapiro-Wilks Test; QQ-
plot

Independence Observations are sampled independently. Yes Yes (within and across
groups)

Yes (within groups)

Tests: None. Design issue.

Homogeneity of
variance

Population level standard deviation is the same
in both groups.

NA Yes NA

Tests: F-test

Matched Pairs in data For paired sample, each observation must have
matched pair.

NA NA Yes

Tests: None. Data structure issue.
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Assumptions
As noted above, we have some requirements of the data, and we have model assumptions for the test to be valid:

DV is continuous
Independence - the data are independent
Normality - The data are normally distributed OR the sample size is sufficiently large (rule of thumb  = 30)

If any of these assumptions are not met, the results of the test are unreliable

n
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Assumptions: How to check/test
DV is continuous

The dependent variable should be measured at the interval or ratio level
Independence

More of a study design issue, and cannot directly test
Normality

Can be checked visually with plots, as well as with descriptive statistics, and a Shapiro-Wilks Test
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Assumption checks: Normality
Descriptive statistics:

Skew:
Below are some rough guidelines on how to interpret skew.
No strict cuts for skew - these are loose guidelines.

Verbal label Magnitude of skew in absolute value

Generally not problematic | Skew | < 1

Slight concern 1 > | Skew | < 2

Investigate impact | Skew | > 2
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Skew
library(psych)
dat %>%
  summarise(
    skew = round(skew(Age),2)
  )

## # A tibble: 1 × 1
##    skew
##   <dbl>
## 1 -0.63

Skew is low (< 1), so we would conclude that it is not problematic.

36 / 48



ggplot(dat, aes(x=Age)) +
  geom_histogram() + 
  labs(title = "Histogram")

Histograms

Our histogram looks "lumpy", but we have relatively low  for looking at these plots.n
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ggplot(dat, aes(x=Age)) +
  geom_density() + 
  labs(title = "Density Plot")

Density

Our density plot looks relatively normal.
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Assumption checks: Normality
QQ-plots (Quantile-Quantile plot):

Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution).
Quantile = the percent of points falling below a given value.
For a normality check, we can compare our own data to data drawn from a normal distribution
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ggplot(dat, aes(sample = Age)) +
  geom_qq() +
  geom_qq_line() + 
      labs(title="QQ-plot", 
       subtitle="The closer the data fit to the
       x = "Theoretical quantiles",
       y = "Sample quantiles")

QQ-plots

This looks a little concerning.
We have some deviation in the lower left corner.
This is showing we have more lower values for age than would be expected.
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Assumption checks: Normality
Shapiro-Wilks test:

Checks properties of the observed data against properties we would expected from normally distributed data.
Statistical test of normality.

: data = the sample came from a population that is normally distributed.
-value  = reject the null, data are not normal.

Sensitive to  as all -values will be.
In very large , normality should also be checked with QQ-plots alongside statistical test.

H0

p < α

n p

n
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Shapiro-Wilks in R
shapiro.test(dat$Age)

## 
##     Shapiro-Wilk normality test
## 
## data:  dat$Age
## W = 0.95, p-value = 0.08

Fail to reject the null,  = .08, which is > .05

Taken collectively, it looks like our assumption of normality is met.

p
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Effect Size: Cohen's D
Cohen's-D is the standardized difference in means.

Having a standardized metric is useful for comparisons across studies.
It is also useful for thinking about power calculations

The basic form of  is the same across the different -tests:D t

D =

Differece

V ariation
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Interpreting Cohen's D
Below are some rough guidelines on how to interpret the size of the effect.

These are not exact labels, but a loose guidance based on empirical research.

Perhaps the most common "cut-offs" for -scores:

Verbal label Magnitude of  in absolute value

Small (or weak)

Medium (or moderate)

Large (or strong)

D

D

≤ 0.20

≈ 0.50

≥ 0.80

44 / 48



Cohen's D: One-sample t-test
One-sample -test:

 = hypothesised mean

 = sample mean
 = sample standard deviation

t

D =
x̄ − μ0

s

μ0

x̄

s
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Cohen's D in R
library(effectsize)
cohens_d(dat$Age, mu=65, alternative="two.sided")

## Cohen's d |        95% CI
## -------------------------
## 0.13      | [-0.18, 0.44]
## 
## - Deviation from a difference of 65.
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Write up: Assumptions
The DV of our study, Age, was measured on a continuous scale, and data were independent (based on study design). The
assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as well as statistically via a Shapiro-
Wilks test. Whilst the QQplot did show some deviation from the diagonal line, the Shapiro-Wilks test suggested that the sample
came from a population that was normally distributed . This was inline with the histogram and density plot,
which suggested that Age was normally distributed (and where skew < 1). The size of the effect was found to be small  = 0.13
[-0.18, 0.44].

(W = 0.95, p = .08)
D
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Summary
Today we have covered:

Basic structure of the one-sample -test
Calculations
Interpretation
Assumption checks
Effect size measures (Cohen's )
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