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Learning Objectives
Understand when to use a one sample -test
Understand the null hypothesis for a one sample -test
Understand how to calculate the test statistic
Know how to conduct the test in R
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Topics for Today
Introduce the three types of -test
One-sample -test example
Inferential tests for the one-sample -test
Assumptions and e�ect size
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T-Test: Purpose
-tests (generally) concern testing the di�erence between two means.

Another way to state this is that the scores of two groups being tested are from the sample underlying population
distribution.

One-sample -tests compare the mean in a sample to a known mean.

Independent -tests compare the means of two independent samples.

Paired sample -tests compare the mean from a single sample at two points in time (repeated measurements)

We will look in more detail at these tests over the next three weeks.

But let's start by thinking a little bit about the logic -tests.
For the next few slides, have a bit of paper and a pen handy.
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Write down whether you think these means (two lines)
are di�erent. Write either:

Yes
No
It depends

Are these means di�erent?
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Write down whether you think these means (two lines)
are di�erent. Write either:

Yes
No
It depends

What about these?
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Di�erences in means
OK, now please write down:

1. Why you wrote the answers you did?
2. If you wrote, "It depends", why can we not tell whether they are di�erent or not?
3. What else might we want to know in order to know whether not the group means could be thought of as coming from the

same distribution?
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All the information
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All the information
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Questions?
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t-statistic
Recall when talking about hypothesis testing:

We calculate a test statistic that represents our question.
We compare our sample value to the sampling distribution under the null

Here the test statistic is a -statistic.t
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t-statistic

The numerator = a di�erence in means
The denominator = a estimate of variability

where
 = sample estimated standard deviation of 
 = sample size

 = a standardized di�erence in means

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n

s x
n

t
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Data Requirements: One-sample t-test
A continuous variable

Remember we are calculating means

A known mean that we wish to compare our sample to

A sample of data from which we calculate the sample mean
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Example
Suppose I want to know whether the retirement age of Professors at my University is the same as the national average.

The national average age of retirement for Prof's is 65.

So I look at the age of the last 40 Prof's that have retired at Edinburgh and compare against this value.
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Data
## # A tibble: 40 × 2
##    ID       Age
##    <chr>  <dbl>
##  1 Prof1     76
##  2 Prof2     66
##  3 Prof3     58
##  4 Prof4     68
##  5 Prof5     79
##  6 Prof6     74
##  7 Prof7     75
##  8 Prof8     50
##  9 Prof9     69
## 10 Prof10    70
## # … with 30 more rows
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Hypotheses
When we are testing whether the population mean  is equal to a hypothesized value .

Note this is identical to saying:

(μ) (μ0)

H0 : μ = μ0

H0 : μ − μ0 = 0
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Alternative Hypotheses
Two-tailed:

One-tailed:

H0 : μ = μ0 vs H1 : μ ≠ μ0

H0 : μ = μ0

H1 : μ < μ0

H1 : μ > μ0
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Hypotheses
Let's assume a priori we have no idea of the ages the Prof's retired.

So I specify a two-tailed hypothesis with  = .05.

So I am simply asking, does my mean di�er from the known mean.

α
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Calculation

Steps to calculate :
Calculate the sample mean .
Calculate the standard error of the mean .

Calculate the sample standard deviation .
Check I know my sample size .
Use all this to calculate .

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n

t
(x̄)

( )s

√n

(s)
(n)

t
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Calculation

dat %>%
  summarise(
    mu0 = 65,
    xbar = mean(Age),
    s = sd(Age),
    n = n()
  ) %>%
  mutate(
    se = s/sqrt(n)
  )  %>%
  kable(digits = 2) %>%
  kable_styling(full_width = FALSE)

mu0 xbar s n se

65 66.3 10.01 40 1.58

t = where SEx̄ =
x̄ − μ0

SEx̄

s

√n
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Calculation
mu0 xbar s n se

65 66.3 10.01 40 1.58

So in our example 

t = = = = 0.82
x̄ − μ0

s

√n

66.30 − 65.00
10.01

√40.00

1.30

1.58

t = 0.82
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Questions?
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Is our test significant?
The sampling distribution for -statistics is a -distribution.

The -distribution is a continuous probability distribution very similar to the normal distribution.

Key parameter = degrees of freedom (df)
df are a function of .
As  increases (and thus as df increases), the -distribution approaches a normal distribution.

For a one sample -test, we compare our test statistic to a -distribution with n-1 df.
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Is our test significant?
So we have all the pieces we need:

Degrees of freedom = -1 = 40-1 = 39
We have our -statistic (0.82)
Hypothesis to test (two-tailed)

 level (.05).

So now all we need is the critical value from the associated -distribution in order to make our decision.
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tibble(
  LowerCrit = round(qt(0.025, 39),2),
  UpperCrit = round(qt(0.975, 39),2),
)

## # A tibble: 1 × 2
##   LowerCrit UpperCrit
##       <dbl>     <dbl>
## 1     -2.02      2.02

Is our test significant?
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Is our test significant?
So our critical value is 2.02

Our -statistic (0.82) is closer to 0 than this.
So we fail to reject the null hypothesis.

, two-tailed.

t

t(39) = 0.82, p > .05
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## # A tibble: 1 × 1
##   Exactp
##    <dbl>
## 1   0.42

Exact p-values
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In R: Types of Hypothesis
alternative = refers to the direction of our alternative hypothesis 

: alternative="less"
Our Edinburgh Prof's have a lower retirement age than the national average

: alternative="greater"
Our Edinburgh Prof's have a higher retirement age than the national average

: alternative="two-sided"
Our Edinburgh Prof's have a di�erent retirement age than the national average

t.test(dat$Age, mu=65, alternative="______")

(H1)
μ < μ0

μ > μ0

μ ≠ μ0
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Our test: In R
t.test(dat$Age, mu=65, alternative="two.sided")

## 
##     One Sample t-test
## 
## data:  dat$Age
## t = 0.82, df = 39, p-value = 0.4
## alternative hypothesis: true mean is not equal to 65
## 95 percent confidence interval:
##  63.1 69.5
## sample estimates:
## mean of x 
##      66.3
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Write up
A one-sample -test was conducted to determine there was a statistically significant  mean di�erence between the
average retirement age of Professors and the age at retirement of a sample of 40 Edinburgh Professors. Although the sample had a
higher average age of retirement (Mean=66.3, SD=10.01) than the population (Mean = 65), this di�erence was not statistically
significant .

t (α = .05)

(t(39) = 0.82, p > .05, two − tailed)
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Questions?
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Assumption checks summary

Description One-Sample t-
test

Independent Sample t-
test

Paired Sample t-test

Normality Continuous variable (and di�erence) is normally
distributed.

Yes (Population) Yes (Both groups/
Di�erence)

Yes (Both groups/
Di�erence)

Tests: Descriptive Statistics; Shapiro-Wilks Test; QQ-
plot

Independence Observations are sampled independently. Yes Yes (within and across
groups)

Yes (within groups)

Tests: None. Design issue.

Homogeneity of
variance

Population level standard deviation is the same
in both groups.

NA Yes NA

Tests: F-test

Matched Pairs in data For paired sample, each observation must have
matched pair.

NA NA Yes

Tests: None. Data structure issue.
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Assumptions
As noted above, we have some requirements of the data, and we have model assumptions for the test to be valid:

DV is continuous
Independence - the data are independent
Normality - The data are normally distributed OR the sample size is su�iciently large (rule of thumb  = 30)

If any of these assumptions are not met, the results of the test are unreliable

n
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Assumptions: How to check/test
DV is continuous

The dependent variable should be measured at the interval or ratio level
Independence

More of a study design issue, and cannot directly test
Normality

Can be checked visually with plots, as well as with descriptive statistics, and a Shapiro-Wilks Test

34 / 48



Assumption checks: Normality
Descriptive statistics:

Skew:
Below are some rough guidelines on how to interpret skew.
No strict cuts for skew - these are loose guidelines.

Verbal label Magnitude of skew in absolute value

Generally not problematic | Skew | < 1

Slight concern 1 > | Skew | < 2

Investigate impact | Skew | > 2
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Skew
library(psych)
dat %>%
  summarise(
    skew = round(skew(Age),2)
  )

## # A tibble: 1 × 1
##    skew
##   <dbl>
## 1 -0.63

Skew is low (< 1), so we would conclude that it is not problematic.
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ggplot(dat, aes(x=Age)) +
  geom_histogram() + 
  labs(title = "Histogram")

Histograms

Our histogram looks "lumpy", but we have relatively low  for looking at these plots.n
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ggplot(dat, aes(x=Age)) +
  geom_density() + 
  labs(title = "Density Plot")

Density

Our density plot looks relatively normal.
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Assumption checks: Normality
QQ-plots (Quantile-Quantile plot):

Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution).
Quantile = the percent of points falling below a given value.
For a normality check, we can compare our own data to data drawn from a normal distribution
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ggplot(dat, aes(sample = Age)) +
  geom_qq() +
  geom_qq_line() + 
      labs(title="QQ-plot", 
       subtitle="The closer the data fit to the
       x = "Theoretical quantiles",
       y = "Sample quantiles")

QQ-plots

This looks a little concerning.
We have some deviation in the lower le� corner.
This is showing we have more lower values for age than would be expected.
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Assumption checks: Normality
Shapiro-Wilks test:

Checks properties of the observed data against properties we would expected from normally distributed data.
Statistical test of normality.

: data = the sample came from a population that is normally distributed.
-value  = reject the null, data are not normal.

Sensitive to  as all -values will be.
In very large , normality should also be checked with QQ-plots alongside statistical test.

H0

p < α

n p

n
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Shapiro-Wilks in R
shapiro.test(dat$Age)

## 
##     Shapiro-Wilk normality test
## 
## data:  dat$Age
## W = 0.95, p-value = 0.08

Fail to reject the null,  = .08, which is > .05

Taken collectively, it looks like our assumption of normality is met.

p
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E�ect Size: Cohen's D
Cohen's-D is the standardized di�erence in means.

Having a standardized metric is useful for comparisons across studies.
It is also useful for thinking about power calculations

The basic form of  is the same across the di�erent -tests:D t

D =

Differece

V ariation
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Interpreting Cohen's D
Below are some rough guidelines on how to interpret the size of the e�ect.

These are not exact labels, but a loose guidance based on empirical research.

Perhaps the most common "cut-o�s" for -scores:

Verbal label Magnitude of  in absolute value

Small (or weak)

Medium (or moderate)

Large (or strong)

D

D

≤ 0.20

≈ 0.50

≥ 0.80
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Cohen's D: One-sample t-test
One-sample -test:

 = hypothesised mean

 = sample mean
 = sample standard deviation

t

D =
x̄ − μ0

s

μ0

x̄

s
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Cohen's D in R
library(effectsize)
cohens_d(dat$Age, mu=65, alternative="two.sided")

## Cohen's d |        95% CI
## -------------------------
## 0.13      | [-0.18, 0.44]
## 
## - Deviation from a difference of 65.
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Write up: Assumptions
The DV of our study, Age, was measured on a continuous scale, and data were independent (based on study design). The
assumption of normality was visually assessed (via histograms, density plots, and a QQplot) as well as statistically via a Shapiro-
Wilks test. Whilst the QQplot did show some deviation from the diagonal line, the Shapiro-Wilks test suggested that the sample
came from a population that was normally distributed . This was inline with the histogram and density plot,
which suggested that Age was normally distributed (and where skew < 1). The size of the e�ect was found to be small  = 0.13
[-0.18, 0.44].

(W = 0.95, p = .08)
D
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Summary
Today we have covered:

Basic structure of the one-sample -test
Calculations
Interpretation
Assumption checks
E�ect size measures (Cohen's )
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