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Weeks Learning Objectives
1. Understand how to calculate covariance and correlation.

2. Understand how to interpret the magnitude and direction of correlation coefficients.#

3. Understand which form of correlation to compute for different types of data.
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Topics for today
Recording 1: What is a correlation?

Recording 2: Variance, covariance and correlation

Recording 3: Pearson correlation

Recording 4: Other forms of correlation
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Purpose
Correlations measure the degree of association between two variables.

If one goes up does the other go up (positive association)?
If one variable changes (varies) does the other change (vary) too.
If one goes up does the other go down (negative association)?

The value ranges from -1 to 1.

Values close to |1| indicate stronger associations.
Values close to 0 indicate no association.
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Data Requirements
Variable 1 Variable 2 Correlation Type

Continuous Continuous Pearson

Continuous Categorical Polyserial

Continuous Binary Biserial

Categorical Categorical Polychoric

Binary Binary Tetrachoric

Rank Rank Spearman

Nominal Nominal Chi-square

There is a form of correlation for almost all data types.
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Scatterplots
Typical visualization of correlations is through scatterplots.
Scatterplots plot points at the (x,y) co-ordinates for two measured variables.
We plot these points for each individual in our data set.

This produces the clouds of points.
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Simple Data
data <- tibble(
  name = as_factor(c("John", "Peter","Robert","David","George","Matthew", "Bradley")),
  height = c(1.52,1.60,1.68,1.78,1.86,1.94,2.09),
  weight = c(54,49,50,67,70,110,98)
)

## # A tibble: 6 × 3
##   name    height weight
##   <fct>    <dbl>  <dbl>
## 1 John      1.52     54
## 2 Peter     1.6      49
## 3 Robert    1.68     50
## 4 David     1.78     67
## 5 George    1.86     70
## 6 Matthew   1.94    110
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Scatterplot
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Scatterplot
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Strength of correlation
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Time for a break
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Welcome Back!
We have discussed what a correlation is and how to visualize it. Now let's move on to consider the relation to variance and

covariance
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Variance

Variance is the mean squared deviation from the mean.

V arx =
∑

n

i=1 (xi − x̄)
2

n − 1
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On the plot on the left we see the raw deviations for
weight (y-axis) for each person (x-axis).

Each point is a person's weight.
The solid black line is the average weight.
The dashed lines highlight the distance from the
mean of the individual weights.
The raw deviations are show by each point.

Raw deviations are the distance of each person's weight
from the average weight.

To get the variance, we square each value (to get rid of
the negative values) and sum them up.

Variance
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On the left is the same figure but for height.

Variance
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Covariance
So variance = deviation around the mean of a single variable.
Covariance concerns variation in two variables.
To think about the equation for covariance, suppose we re-write variance as follows. Instead of:

we use

V arx =
∑

n

i=1 (xi − x̄)
2

n − 1

Covxx =
∑

n

i=1 (xi − x̄)(xi − x̄)

n − 1
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Covariance

So our covariance is identical to our variance, with the exception that our summed termed is the combined deviance from the
respective means of both  and .

Covxy =
∑

n

i=1 (xi − x̄)(yi − ȳ)

n − 1

x y

17 / 54



Covariance
For our data:

round(cov(data$height, data$weight),4)

## [1] 4.1681
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Scale & Covariance
So what does a covariance of 4.1681 between height and weight mean?

I have no idea!

Covariance is related to the scale of the variables we are analysing.

Makes sense right? variance was just the same.

What about if we had measured height in centimetres not metres?

round(cov(data$height*100, data$weight),2)

## [1] 416.81
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Correlation
How do we deal with problems of scale?

We standardize.

And how do we standardize?

We divide by an estimate of the variability.
Here, the product of standard deviations of  and .

The resulting statistic is the Pearson Product Moment Correlation (  )

x y

r
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Correlation

Or in full

r =
Covxy

SDxSDy

r =

∑n
i=1 (xi−x̄)(yi−ȳ)

n−1

√ √∑
n

i=1 (xi−x̄)
2

n−1

∑
n

i=1 (xi−x̄)
2

n−1
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Correlation
In our data:

cov(data$height, data$weight)/ (sd(data$height)*sd(data$weight))

## [1] 0.8687186

or we can use built in functions:

cor(data$height, data$weight)

## [1] 0.8687186
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Correlation = ES
For some other tests we have discussed associated measures of effect size.

Remember, an effect size is a standardized measures of the type relationship of interest.

So Cohen's D is a standardize raw mean difference.

Well our correlation is standardized

It is a standardized covariance.
Or a standardize measure of association
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Time for a break
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Welcome Back!
In the last recording we considered the relationships between variance, covariance and correlation. Now we will consider

inferential tests for the Pearson's correlation.
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Hypotheses
For many people, correlations are descriptive statistics.

As such, they do not require significance tests.

But in other circumstances a correlation may be a test of interest, and we can formulate associated hypothesis tests.
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Hypotheses
The association between two random variables = 0.

This leads to the null for a correlation being:

And the two-tailed alternative:

The sampling distribution of  is approximately normal with large N, and is  distributed when N is small.
Thus we assess the significance using the -distribution with n-2 degrees of freedom.
The minus 2 is because we have had to calculate the means of both variables from our data.

H0 : r = 0

H1 : r ≠ 0

r t
t
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Hypothesis testing & significance
The -statistic for a given correlation is calculated as:

So for our data:

t

t = r√
n − 2

1 − r2

t = r√ = 0.87√ = 0.87√ = 0.87 ∗ 4.535 = 3.95
n − 2

1 − r2

5

1 − 0.872

5

0.2431
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Is our test significant?
So the  associated with our correlation is 3.95

Our degrees of freedom are n-2 = 7-2 = 5
We will use two-tailed 

t

α = .05
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Is our test significant?

## # A tibble: 1 × 2
##   LowerCrit UpperCrit 30 / 54



In R
cor.test(data$height, data$weight)

## 
##     Pearson's product-moment correlation
## 
## data:  data$height and data$weight
## t = 3.9218, df = 5, p-value = 0.01116
## alternative hypothesis: true correlation is not equal to 0
## 95 percent confidence interval:
##  0.3344679 0.9804020
## sample estimates:
##       cor 
## 0.8687186
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Write up
Write up is very simple for small number of variables.

There was a strong positive correlation between height and weight (  = .87, (5) = 3.92, <.05) in the current sample.
As height increased, so did weight.

Often we report lots of correlations and do so in a correlation matrix.

r t p
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Correlation matrices
Off-diagonal values show the correlations between the variables.

Range from -1 to 1.

Values in diagonal are correlations of each variable with itself.

Always 1.00
Not informative
Can omit or replace with e.g. reliability

Symmetric.

Above and below diagonal = same values.
Do not need both.
Could switch with p-values or leave empty
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Correlation matrices
pers_items <- bfi[,c(1:5)]
pers_cors <- hetcor(pers_items)

round(pers_cors$correlations, 2)

##       A1    A2    A3    A4    A5
## A1  1.00 -0.34 -0.27 -0.15 -0.18
## A2 -0.34  1.00  0.49  0.34  0.39
## A3 -0.27  0.49  1.00  0.36  0.51
## A4 -0.15  0.34  0.36  1.00  0.31
## A5 -0.18  0.39  0.51  0.31  1.00
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Assumptions: Pearson correlation
1. Variables must be interval or ratio (continuous)

No test: about design.

2. Variables must be normally distributed.

Histograms, skew, QQ-Plots, Shapiro-Wilks.

3. Homoscedasticity (homogeneity of variance)

4. The relationship between the two variables must be linear.

Visualize: scatterplots.
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Anscombe Quartet
Anscombe quartet is a set of data designed to show the importance of visualizing data.

There are four pairs of  and  variables.

Each  variable has the same mean and standard deviation.
Each  variable has the same mean and standard deviation.
Each pair has the same correlation.

In other words, if you calculate descriptive statistics only, each pair is identical.

BUT......

x y

x
y
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round(cor(anscombe$x1, anscombe$y1),2)

## [1] 0.82

round(cor(anscombe$x2, anscombe$y2),2)

## [1] 0.82

round(cor(anscombe$x3, anscombe$y3),2)

## [1] 0.82

round(cor(anscombe$x4, anscombe$y4),2)

## [1] 0.82

Anscombe Quartet
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Time for a break
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Welcome Back!
We have now looked at the Pearson correlation, but what about different data types?
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Types of correlation
Variable 1 Variable 2 Correlation Type

Continuous Continuous Pearson

Continuous Categorical Polyserial

Continuous Binary Biserial

Categorical Categorical Polychoric

Binary Binary Tetrachoric

Rank Rank Spearman

Nominal Nominal Chi-square
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Spearman correlation
Spearman's  (or rank-order correlation) uses data on the rank-ordering of ,  responses for each individual.

When would we choose to use the Spearman correlation?

If our data are naturally ranked data (e.g. imagine a survey where the task is to rank foods and drinks in terms of
preference).
If the data are non-normal or skewed.
If the data shows evidence of non-linearity.

ρ x y
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Spearman correlation
Spearman's is not testing for linear relations, it is testing for increasing monotonic relationship.

Huh?
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Left-hand plot shows a perfectly linear relationship
between A and B.

Right-hand plot shows a perfectly increasingly
monotinic relationship between A and C.

The rank position of all observations on A, is the
same a the rank position of all observations on C.

Linear vs. monotonic

43 / 54



ID A C Rank_A Rank_C

ID1 1 1 1 1

ID2 2 4 2 2

ID3 3 5 3 3

ID4 4 6 4 4

ID5 5 8 5 5

ID6 6 9 6 6

ID7 7 10 7 7

ID8 8 13 8 8

ID9 9 15 9 9

ID10 10 16 10 10

Linear vs. monotonic
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Steps in Spearman's

Calculation steps:
Rank each variable from largest to smallest.
If there are ties in ranks, assign the average of the rankings to each case.
Calculate the difference in rank for each person on the two variables.
Square the difference.
Sum the squared values.

ρ = 1 −
6Σd2

i

n(n2 − 1)
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Quick example
rank <- tibble(
  ID = paste("ID", 1:6, sep = ""),
  RT =c(.264, .311, .265, .291, .350, .500),
  Caff = c(210,280,150,90,200,450)
)
rank

## # A tibble: 6 × 3
##   ID       RT  Caff
##   <chr> <dbl> <dbl>
## 1 ID1   0.264   210
## 2 ID2   0.311   280
## 3 ID3   0.265   150
## 4 ID4   0.291    90
## 5 ID5   0.35    200
## 6 ID6   0.5     450
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Calculation
rank_calc <- rank %>%
  mutate(
    RT_rank = rank(RT),
    Caff_rank = rank(Caff),
    di = RT_rank - Caff_rank,
    di2 = di^2
  )
rank_calc

## # A tibble: 6 × 7
##   ID       RT  Caff RT_rank Caff_rank    di   di2
##   <chr> <dbl> <dbl>   <dbl>     <dbl> <dbl> <dbl>
## 1 ID1   0.264   210       1         4    -3     9
## 2 ID2   0.311   280       4         5    -1     1
## 3 ID3   0.265   150       2         2     0     0
## 4 ID4   0.291    90       3         1     2     4
## 5 ID5   0.35    200       5         3     2     4
## 6 ID6   0.5     450       6         6     0     0
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Calculation
## # A tibble: 6 × 7
##   ID       RT  Caff RT_rank Caff_rank    di   di2
##   <chr> <dbl> <dbl>   <dbl>     <dbl> <dbl> <dbl>
## 1 ID1   0.264   210       1         4    -3     9
## 2 ID2   0.311   280       4         5    -1     1
## 3 ID3   0.265   150       2         2     0     0
## 4 ID4   0.291    90       3         1     2     4
## 5 ID5   0.35    200       5         3     2     4
## 6 ID6   0.5     450       6         6     0     0

ρ = 1 − = 1 − = 1 − = 1 − 0.514 = 0.486
6Σd2

i

n(n2 − 1)

6 ∗ 18

6(62 − 1)

108

210
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In R
round(cor(rank$RT, rank$Caff, method = "spearman"),3)

## [1] 0.486
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General principle (simplified a little) of the other forms
of correlation is roughly the same.

We assume that the categorical variable is a crude
measurement of an underlying normal variable.

Aiming to provide an estimate of the association
between these underlying variables.

Other forms
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In R
Estimating correlation is straight forward.

All we need to do is make sure R knows the type of data we have, then use hetcor

pers_items <- bfi[,c(1:5)]
pers_items <- pers_items %>%
  mutate(
    A1 = as_factor(A1)
  )
pers_cors <- hetcor(pers_items)
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In R
round(pers_cors$correlations,2)

##       A1    A2    A3    A4    A5
## A1  1.00 -0.37 -0.29 -0.16 -0.21
## A2 -0.37  1.00  0.49  0.34  0.39
## A3 -0.29  0.49  1.00  0.36  0.51
## A4 -0.16  0.34  0.36  1.00  0.31
## A5 -0.21  0.39  0.51  0.31  1.00

pers_cors$type

##      [,1]         [,2]         [,3]         [,4]         [,5]        
## [1,] ""           "Polyserial" "Polyserial" "Polyserial" "Polyserial"
## [2,] "Polyserial" ""           "Pearson"    "Pearson"    "Pearson"   
## [3,] "Polyserial" "Pearson"    ""           "Pearson"    "Pearson"   
## [4,] "Polyserial" "Pearson"    "Pearson"    ""           "Pearson"   
## [5,] "Polyserial" "Pearson"    "Pearson"    "Pearson"    ""
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Correlation and causation
You will talk more about this point in lab.

And forever more when discussing statistical results.

Typically we hope to be able to explain why things happen.

Though correlation is a fundamental metric in statistics, it actually does not help us (on it's own) with this.

An association between two things does not mean it causes the other.

Much more on this to come in lab and next year.
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Summary of today
In these recordings we have discussed:

The basic principle and interpretation of correlations
The importance of visualization and how to "read" scatterplots.
Calculation of Pearson's and other forms of correlation
Inferential tests and effect sizes for correlations.
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