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Weeks Learning Objectives
1. Understand how to perform a  goodness-of-fit and interpret the results.

2. Understand how to perform a  test of independence and interpret the results.

3. Conduct and interpret the assumption checks for  tests.
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Topics for today
Recording 1:

Types of  test
Worked example of  goodness-of-fit
Relative, observed and expected frequencies

Recording 2:

Worked example of  goodness-of-fit
Inferential testing, and write up.

Recording 3:

Worked example of  test of independence.

Recording 4:

Residuals, assumptions and effect size measures.

Bonus slides: For those who are interested, the full calculations for recording 2 are given in slides.
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Purpose
 goodness of fit test

The primary purpose is to test whether the collected data (observed frequencies) are consistent with a
hypothesized/known distribution (expected frequencies).

 test of independence:

We have 2 categorical variables, drawn from a single population.
We want to know if the variables are independent or not.
If the category membership is dependent, then knowing what category someone is in on variable 1, helps us predict
what category they would be in for variable 2.
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Data Requirements
 goodness of fit test

Single categorical variable

 test of independence:

Two categorical variables.
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Example: Goodness of fit
Suppose we are interested in the distribution of students across three final year psychology options (Social, Differential,
Developmental).

We have data from 2014-15, and we want to know if the distribution is the same in 2015-16.
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Data
head(class)

## # A tibble: 6 × 2
##   ID    course       
##   <chr> <fct>        
## 1 ID1   Differential 
## 2 ID2   Social       
## 3 ID3   Social       
## 4 ID4   Social       
## 5 ID5   Social       
## 6 ID6   Developmental

ID = Unique ID variable
course = factor with 3 levels (Social, Differential, Developmental)
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Observed frequencies
tab1 <- class %>%
  group_by(course) %>%
  tally()

tab1

## # A tibble: 3 × 2
##   course            n
##   <fct>         <int>
## 1 Differential     28
## 2 Social           62
## 3 Developmental    60
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Relative frequencies
In 2014-15, the department had the following proportions:

Social = 0.50, or 50%
Differential = 0.30, or 30%
Developmental = 0.20, or 20%
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Relative frequencies
tab1 <- tab1 %>%
  transmute(
    course = course,
    relative = c(0.30, 0.50, 0.20),
    observed = n
  )

tab1

## # A tibble: 3 × 3
##   course        relative observed
##   <fct>            <dbl>    <int>
## 1 Differential       0.3       28
## 2 Social             0.5       62
## 3 Developmental      0.2       60
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Expected frequencies
Given this, and a total number of students (n=150) for the current year, we can calculate the expected frequencies for each
area.

Expected = Relative ∗ N
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Put it together
tab1 <- tab1 %>%
  mutate(
    expected = relative*sum(observed)
  )

tab1

## # A tibble: 3 × 4
##   course        relative observed expected
##   <fct>            <dbl>    <int>    <dbl>
## 1 Differential       0.3       28       45
## 2 Social             0.5       62       75
## 3 Developmental      0.2       60       30
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Time for a break
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Welcome Back!
Now we have discussed how to calculate the core values from our data, let's think about our hypotheses, test statistic, and

inferential testing.
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Hypotheses

 says that the data follow a specific and known pattern or probabilities (frequencies)
 says they don't

H0 = P(0.20, 0.50, 0.30)

H1 ≠ P(0.20, 0.50, 0.30)

H0

H1
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Test statistic

 = expected frequencies
 = observed frequencies

 = do the calculation starting from cell 1 through to cell  (k=number groups) and add them up.

χ2 =
k

∑
i=1

(Ei − Oi)2

Ei

Ei

Oi

∑k

i=1 k
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Null Distribution
Sampling distribution for  test is a  distribution.

 distribution describes the distribution of the sum of  squared independent standard normal variables.

Huh?

χ2 χ2

χ2 k

χ2 =
k

∑
i=1

(Ei − Oi)
2

Ei
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Null Distribution
Parameter of the  distribution is degrees of freedom (df)

Just like -test.

df are determined by the number of categories (  )

Goodness of fit test has  degrees of freedom.

Why?

χ2

t

k

k − 1
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The plot shows  distributions for 2 (black), 3 (red),
and 5 (blue) df's

Note that as the df increase, the area under the curve for
smaller values increases.

What does that mean?

It means as we add up more things, we would
expect the random fluctuations from 0 to to also
increase.
In any given sample, even if the null is true in the
population, sampling variability would mean we
have some non-zero values.
So we need to account for this.

Null Distribution

χ2
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Calculation
tab1 <- tab1 %>%
  mutate(
    step1 = expected - observed,
    step2 = step1^2,
    step3 = step2/expected
  )
tab1

## # A tibble: 3 × 7
##   course        relative observed expected step1 step2 step3
##   <fct>            <dbl>    <int>    <dbl> <dbl> <dbl> <dbl>
## 1 Differential       0.3       28       45    17   289  6.42
## 2 Social             0.5       62       75    13   169  2.25
## 3 Developmental      0.2       60       30   -30   900 30

Step1 = 
Step2 = 

Step3 = 

Ei − Oi

(Ei − Oi)2

(Ei−Oi)2

Ei
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Calculation
Last step is to sum the values for step 3 to get the 

x2 <- sum(tab1$step3)
x2

## [1] 38.67556

χ2
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Is my test significant?
 = 38.68

Degrees of freedom = 3-1 = 2

 = 0.05

χ2

α
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Is my test significant?
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Is my test significant?
tibble(
  CritValue = round(qchisq(0.95, 2),2),
  Exactp = round(1-pchisq(x2, 2),5)
)

## # A tibble: 1 × 2
##   CritValue Exactp
##       <dbl>  <dbl>
## 1      5.99      0
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In R
gof_res <- chisq.test(tab1$observed, p = c(0.3, 0.5, 0.2))
gof_res

## 
##     Chi-squared test for given probabilities
## 
## data:  tab1$observed
## X-squared = 38.676, df = 2, p-value = 3.997e-09
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Write up
A  goodness of fit test was conducted in order to investigate whether the distribution of students across Social, Developmental
and Differential classes was equivalent in 2014- 15 and 2015-16. The goodness of fit test was significant ( (2) = 38.68, <.05) and
thus the null hypothesis was rejected. The distribution of student's across courses differs between the two academic years.

χ2

χ2 p
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Time for a break
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Welcome Back!
We will now follow the same steps for a test of independence.
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Example: Independence
I have conducted an experiment with three conditions (n=120, 40 per group)

I want to check whether my participants are equally distributed based on some demographic variables.

Let's focus on whether English is participants first language

Recall from an experimental design perspective, I want such things to be randomized across my groups.

So I would expect an even distribution.
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Data
head(exp)

## # A tibble: 6 × 3
##   ID    condition lang 
##   <chr> <chr>     <chr>
## 1 ID1   control   Yes  
## 2 ID2   control   No   
## 3 ID3   control   No   
## 4 ID4   control   Yes  
## 5 ID5   control   No   
## 6 ID6   control   No

ID = Unique ID variable
condition = experimental conditions (control, group1, group2)
lang = binary Yes/No for English as first language
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Tabular format
It can be very useful to display data for two categorical variables as a contingency table.

tabs <- addmargins(table(exp$condition, exp$lang))
tabs

##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120
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#install.packages("ggmosaic")
#library(ggmosaic)

ggplot(data = exp) +
  geom_mosaic(aes(x=product(condition, lang), 
                  fill = condition)) +
  labs(x = "\n First Language", y = "")

Visualizing Data: Mosaic Plot
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 says the proportion of each cell in each row are
equal.

 says at least one of these pairs are not equal.

Hypotheses
No Yes

Control P11 P12

Group1 P21 P22

Group2 P31 P32

H0 : P11 = P12,P21 = P22,P31 = P32

H1 : P11 ≠ P12|P21 ≠ P22|P31 ≠ P32

H0

H1
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Intuition about the null
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Test statistic
The test statistic looks much the same as the statistic for the GoF test.

What is different?
 simply means sum the quantities for all cells in all rows (r) and columns (c)

But why ? Why the hat?

χ2 =
r

∑
i=1

c

∑
i=1

(Êij − Oij)2

Êij

∑r

i=1∑
c

i=1

Êij
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Expected frequencies
Remember in the GoF test we knew the expected frequencies because we had known proportions and known sample size.

Here we do not have that.

So we have to estimate the expected frequencies from the data.

Hence we use  to show this is an estimate.

Where

 = the row marginal for a cell 
 = the column marginal for a cell 
 = total sample size

Here we will show the calculation for one cell (for the cell by cell calculations see the additional material).

Ê

Êij =
RiCj

N

Ri i

Ci j

N
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Calculation: Controls-No
##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

Ê11 = = = = 21.67
R1C1

N

40 ∗ 65

120

2600

120

= = = 0.33
(Ê11 − O11)2

Ê11

(21.67 − 19)2

21.67

7.1289

21.67
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Null Distribution
Again, we evaluate the  test of independence statistic against the -distribution.

Here:

Note,  and  are just the number of levels for each categorical variable.

In our example 

Thus using the same =0.05, we would have the same critical value = 5.99

χ2 χ2

df = (r − 1)(c − 1)

r c

(r − 1)(c − 1) = (3 − 1)(2 − 1) = 2 ∗ 1 = 2

α
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In R
con <- table(exp$condition, exp$lang)
ind_res <- chisq.test(con)
ind_res

## 
##     Pearson's Chi-squared test
## 
## data:  con
## X-squared = 13.964, df = 2, p-value = 0.0009286
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Write up
A  test of independence was performed to examine whether the distribution of English first language speakers was consistent
across experimental conditions (n=120). The relation between these variables was significant ($\chi^2$(2) = 13.96, p <.05).
Therefore, we reject the null hypothesis.

χ2

40 / 69



Time for a break
For your mid-lecture exercise, please look over the full calculations of the test statistic for this example in the additional slides.
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Welcome Back!
Our last recording for this week will look at cell residuals, assumptions, corrections and effect size.
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Output
Here I want to make brief comment about analysis objects.

The object ind_res contains the output of our analysis.

This has lots of elements to it.

We can view and work with these by using the $ sign

names(ind_res)

## [1] "statistic" "parameter" "p.value"   "method"    "data.name" "observed" 
## [7] "expected"  "residuals" "stdres"

43 / 69



Residuals
For example, lets look at the residuals.

The Pearson residuals tell us which cells in the contingency table had the greatest differences.

ind_res$residuals

##          
##                   No        Yes
##   control -0.5728919  0.6227992
##   group1   2.0051216 -2.1797970
##   group2  -1.4322297  1.5569979
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Assumptions
Sufficiently large N to approximate a normal sampling distribution

We saw last semester this actually begins to happen pretty fast.

Expected and observed cell frequencies are sufficiently large.

If either drop below 5, then there is not really enough data.

Each observation appears in only 1 cell.

Data are independent.
If data are dependent, we can use a McNemar test.

45 / 69



Yate's correction
Our  test only approximates a  sampling distribution.

When we have a 2x2 table with df=1, it turns out this approximation is not very good.

So for 2x2 tables we apply Yate’s continuity correction.
This subtracts 0.5 from each cell deviation.
It is the default in R when we have a 2x2 table.

χ2 χ2
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Effect size
Three possibilities:

Phi coefficient (for 2x2 tables)
Odds ratios
Cramer's V

We will discuss odds ratios more in year 2, so let's look at Phi and Cramer's V.
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Effect size
The equations for both measures are shown below:

Cramer's V generalizes Phi to larger contingency tables.

Phi = √
χ2

N

CramerV = √
χ2

N ∗ min(r − 1, c − 1)
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Cramer's V
There is no base R calculation for Cramer's V.

It is included in the lsr package for the Navarro book.

Else we can construct it ourselves.
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Cramer's V
CV = sqrt(ind_res$statistic /
    (length(exp$ID) * 
       (min(length(unique(exp$condition)),
            length(unique(exp$lang))
            ) - 1)))
CV

## X-squared 
## 0.3411211
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Summary of today
We have looked at tests for categorical data:

1. Against a known distribution
2. As a test of independence.

We have considered the calculations, inferential tests, and interpretations.
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Additional Materials

52 / 69



Full calculations
ind_res

## 
##     Pearson's Chi-squared test
## 
## data:  con
## X-squared = 13.964, df = 2, p-value = 0.0009286

Let's do all the steps to calculate  and the exact -value.χ2 p
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Full calculations
Let's start with the expected values

Êij =
RiCj

N
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Full calculations
##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

As we have the same number of participants in each condition, this is also the expected value for  and 

Ê11 = = = = 21.67 
R1C1

N

40 ∗ 65

120

2600

120

Ê21 Ê31
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Full calculations
##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

As we have the same number of participants in each condition, this is also the expected value for  and 

Ê12 = = = = 18.33 
R1C2

N

40 ∗ 55

120

2200

120

Ê22 Ê23
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Full calculations
We can check these against the information in the output to the R analysis

ind_res$expected

##          
##                 No      Yes
##   control 21.66667 18.33333
##   group1  21.66667 18.33333
##   group2  21.66667 18.33333
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Full calculations
Now, the 

##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

χ2

= = = 0.33
(Ê11 − O11)2

Ê11

(21.67 − 19)2

21.67

7.1289

21.67
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Full calculations
Now, the 

##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

χ2

= = = 4.02
(Ê21 − O21)2

Ê21

(21.67 − 31)2

21.67

87.05

21.67
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Full calculations
Now, the 

##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

χ2

= = = 2.05
(Ê31 − O31)2

Ê31

(21.67 − 15)2

21.67

44.49

21.67
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Full calculations
Now, the 

##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

χ2

= = = 0.39
(Ê12 − O12)2

Ê12

(18.33 − 21)2

18.33

7.1289

18.33
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Full calculations
Now, the 

##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

χ2

= = = 4.75
(Ê22 − O22)2

Ê22

(18.33 − 9)2

18.33

87.05

18.33
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Full calculations
Now, the 

##          
##            No Yes Sum
##   control  19  21  40
##   group1   31   9  40
##   group2   15  25  40
##   Sum      65  55 120

χ2

= = = 2.43
(Ê32 − O32)2

Ê32

(18.33 − 25)2

18.33

44.49

18.33
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Full calculations
Last step is to add them up:

x2i <- 0.33 + 4.02 + 2.05 + 0.39 + 4.75 + 2.43
x2i

## [1] 13.97

χ2 =
r

∑
i=1

c

∑
i=1

(Êij − Oij)2

Êij
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Full calculations
And check against the R results (tiny bit of rounding error)

ind_res

## 
##     Pearson's Chi-squared test
## 
## data:  con
## X-squared = 13.964, df = 2, p-value = 0.0009286
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Full calculations
And the p-value

1 - pchisq(13.964, 2)

## [1] 0.0009284445
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Full calculations
The Pearson's residuals are calculated as:

Residualij =
(Eij − Oij)

√Eij
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Full calculations
So let's do one residual and then look at the output of our analysis:

ind_res$residuals

##          
##                   No        Yes
##   control -0.5728919  0.6227992
##   group1   2.0051216 -2.1797970
##   group2  -1.4322297  1.5569979

Residual11 = = = = 0.57
(E11 − O11)

√E11

(21.67 − 19)

√21.67

2.67

4.655105
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Full calculations
Hold on....why is our calculation positive, and the R results negative?

This is just an interpretation point.

In our calculation, we have used 
If instead we calculate , then we would get the same absolute value but negative.
Why not try it.

Eij − Oij

Oij − Eij
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