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Learning Objectives
Understand when to use an independent sample -test

Understand the null hypothesis for an independent sample -test

Understand how to calculate the test statistic

Know how to conduct the test in R

Understand the assumptions for -tests
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Topics for today
Recording 1: Conceptual background and introduction to our example

Recording 2: Calculations and R-functions

Recording 3: Assumptions and effect size
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Purpose & Data
The independent or Student's -test is used when we want to test the difference in mean between two measured groups.

The groups must be independent:

No person can be in both groups.

Examples:

Treatment versus control group in an experimental study.
Married versus not married

Data Requirements

A continuously measured variable.
A binary variable denoting groups

t

4 / 44



Hypotheses
Identical to one-sample, only now we are comparing two measured groups.

Two-tailed:

One-tailed:

H0 : x̄1 = x̄2

H1 : x̄1 ≠ x̄2

H0 : x̄1 = x̄2

H1 : x̄1 < x̄2

H1 : x̄1 > x̄2

5 / 44



Example
Example taken from Howell, D.C. (2010). Statistical Methods for Psychology, 7th Edition. Belmont, CA: Wadsworth Cengage
Learning.

Data from Aronson, Lustina , Good, Keough , Steele and Brown (1998). Experiment on stereotype threat.

Two independent groups college students (n=12 control; n=11 threat condition).
Both samples excel in maths.
Threat group told certain students usually do better in the test
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Data
## # A tibble: 23 × 2
##    Group  Score
##    <fct>  <dbl>
##  1 Threat     7
##  2 Threat     5
##  3 Threat     6
##  4 Threat     5
##  5 Threat     6
##  6 Threat     5
##  7 Threat     4
##  8 Threat     7
##  9 Threat     4
## 10 Threat     3
## # … with 13 more rows
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Visualizing data
We spoke earlier in the course about the importance of visualizing our data.

Here, we want to show the mean and distribution of scores by group.

So we want a.....
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ggplot(data = threat, aes(x = Group, 
                          y = Score, 
                          fill = Group)) +
  geom_boxplot(alpha = 0.3) + 
  geom_jitter(width = 0.1)+
  theme_minimal()

Visualizing data
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Hypotheses
My hypothesis is that the threat group will perform worse than the control group.

This is a one-tailed, or directional hypothesis.

And I will use an α = .05
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t-statistic

Where

 and  are the sample means in each group
 is standard error of the difference

Sampling distribution is a -distribution with  degrees of freedom.

t =
x̄1 − x̄2

SE(x̄1 − x̄2)

x̄1 x̄2

SE(x̄1 − x̄2)

t n − 2
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Standard Error Difference
First calculate the pooled standard deviation.

Then use this to calculate the SE of the difference.

Sp = √
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

SE(x̄1 − x̄2) = Sp√ +
1

n1

1

n2
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Time for a break
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Welcome Back!
OK, we have done all the concepts, now let's do the calculations.
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Calculation
Steps in my calculations:

Calculate the sample mean in both groups.
Calculate the pooled SD.
Check I know my n.
Calculate the standard error.
Use all this to calculate .t
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Calculation
calc <- threat %>%
  group_by(Group) %>%
  summarise(
    Mean = round(mean(Score),2),
    SD = round(sd(Score),2),
    N = n()
  )

## # A tibble: 2 × 4
##   Group    Mean    SD     N
##   <fct>   <dbl> <dbl> <int>
## 1 Threat   5.27  1.27    11
## 2 Control  9.58  1.51    12
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Calculation
## # A tibble: 2 × 4
##   Group    Mean    SD     N
##   <fct>   <dbl> <dbl> <int>
## 1 Threat   5.27  1.27    11
## 2 Control  9.58  1.51    12

Calculate pooled standard deviation

Sp = √ = √ = √ = 1.401
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

10 ∗ 1.272 + 11 ∗ 1.512

11 + 12 − 2

41.21

21
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Calculation
Calculate pooled standard deviation

Calculate the standard error.

Sp = √ = √ = √ = 1.401
(n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2

10 ∗ 1.272 + 11 ∗ 1.512

11 + 12 − 2

41.21

21

SE(x̄1 − x̄2) = Sp√ + = 1.401√ + = 1.401 ∗ 0.417 = 0.584
1

n1

1

n2

1

11

1

12
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Calculation
Use all this to calculate .

Note: When doing hand calculations there might be a small amount of rounding error when we compare to  calculated in R.
In this case, actual value = -7.38

t

t = = = −7.38
x̄1 − x̄2

SE(x̄1 − x̄2)

5.27 − 9.58

0.584

t
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Is my test significant?
Steps:

Calculate my degrees of freedom 
Check my value of  against the -distribution with the appropriate df and make my decision

n − 2 = 23 − 2 = 21
t t
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tibble(
  LowerCrit = round(qt(0.05, 21),2),
    Exactp = 1-pt(7.3817, 21)
)

## # A tibble: 1 × 2
##   LowerCrit      Exactp
##       <dbl>       <dbl>
## 1     -1.72 0.000000146

Is our test significant?
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Is my test significant?
So our critical value is -1.72

Our t-statistic is larger than this, -7.38.
So we reject the null hypothesis.

(21)= -7.38,  <.05, one-tailed.t p
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In R
res <- t.test(Score ~ Group, 
       var.equal = TRUE,
       alternative = "less",
       data = threat)

## 
##     Two Sample t-test
## 
## data:  Score by Group
## t = -7.3817, df = 21, p-value = 1.458e-07
## alternative hypothesis: true difference in means between group Threat and group Control is less than 0
## 95 percent confidence interval:
##       -Inf -3.305768
## sample estimates:
##  mean in group Threat mean in group Control 
##              5.272727              9.583333
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Write up
An independent sample -test was used to assess whether the maths score mean of the control group (12) was higher than that of
the stereotype threat group (11). There was a significant difference in test score between the control (Mean=9.58; SD=1.51) and
threat (Mean=5.27; SD=1.27) groups ( (21)=-7.38, < .05, one-tailed). Therefore, we reject the null hypothesis. The direction of
effect supports our directional hypothesis and indicates that the threat group performed more poorly than the control group.

t

t p
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Time for a break
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Welcome Back!
Next up, checking assumptions and calculating effect size.
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Assumption checks summary

Description One-Sample t-
test

Independent Sample t-
test

Paired Sample t-test

Normality Continuous variable (and difference) is normally
distributed.

Yes
(Population)

Yes (Both groups/
Difference)

Yes (Both groups/
Difference)

Tests: Descriptive Statistics; Shapiro-Wilks Test; QQ-plot

Independence Observations are sampled independently. Yes Yes (within and across
groups)

Yes (within groups)

Tests: None. Design issue.

Homogeneity of
variance

Population level standard deviation is the same in
both groups.

NA Yes Yes

Tests: F-test

Matched Pairs in
data

For paired sample, each observation must have
matched pair.

NA NA Yes

Tests: None. Data structure issue.
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Assumptions
The independent sample -test has the following assumptions:

Independence of observations within and across groups.
Continuous variable is approximately normally distribution within both groups.

Equivalently, that the difference in means is normally distributed.
Homogeneity of variance across groups.

t
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Assumption checks: Normality
Descriptive statistics:

Skew: No strict cuts for skew.
Skew < |1| generally not problematic
|1| < skew > |2| slight concern
Skew > |2| investigate impact

29 / 44



threat %>%
  ggplot(., aes(x=Score)) +
  geom_histogram(bins = 20) +
  facet_wrap(~ Group)

Histograms
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Skew
library(moments)
threat %>%
  group_by(Group) %>%
  summarise(
    skew = round(skewness(Score),2)
  )

## # A tibble: 2 × 2
##   Group    skew
##   <fct>   <dbl>
## 1 Threat  -0.23
## 2 Control -0.08
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Assumption checks: Normality
QQ-plots:

Plots the sorted quantiles of one data set (distribution) against sorted quantiles of data set (distribution).
Quantile = the percent of points falling below a given value.
For a normality check, we can compare our own data to data drawn from a normal distribution
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This looks reasonable in both groups.

QQ-plots

threat %>%
  ggplot(., aes(sample = Score, colour = Group)
  stat_qq() +
  stat_qq_line()
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Assumption checks: Normality
Shapiro-Wilks test:

Checks properties of the observed data against properties we would expected from normally distributed data.
Statistical test of normality.

: data = a normal distribution.
-value  = reject the null, data are not normal.

Sensitive to N as all p-values will be.
In very large N, normality should also be checked with QQ-plots alongside statistical test.

H0

p < α
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Shapiro-Wilks R
con <- threat %>% filter(Group == "Control") %>% select(Score)
shapiro.test(con$Score)

## 
##     Shapiro-Wilk normality test
## 
## data:  con$Score
## W = 0.95538, p-value = 0.7164

thr <- threat %>% filter(Group == "Threat") %>% select(Score)
shapiro.test(thr$Score)

## 
##     Shapiro-Wilk normality test
## 
## data:  thr$Score
## W = 0.93979, p-value = 0.518
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Assumption checks: Homogeneity of variance
Levene's test:

Statistical test for the equality (or homogeneity) of variances across groups (2+).
Test statistic is essentially a ratio of variance estimates calculated based on group means versus grand mean.

The -test is a related test that compares the variances of two groups.

This test is preferable for -test.
: Population variances are equal.

-value  = reject the null, the variances differ across groups.

F

t

H0

p < α
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F-test R
var.test(threat$Score ~ threat$Group, ratio = 1, conf.level = 0.95)

## 
##     F test to compare two variances
## 
## data:  threat$Score by threat$Group
## F = 0.71438, num df = 10, denom df = 11, p-value = 0.6038
## alternative hypothesis: true ratio of variances is not equal to 1
## 95 percent confidence interval:
##  0.2026227 2.6181459
## sample estimates:
## ratio of variances 
##          0.7143813
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Violation of homogeneity of variance
If the variances differ, we can use a Welch test.

Conceptually very similar, but we do not use a pooled standard deviation.

As such our estimate of the SE of the difference changes
As do our degrees of freedom
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Welch test
If the variances differ, we can use a Welch test.

Test statistic = same

SE calculation:

And degrees of freedom (don't worry, not tested)

SE(x̄1 − x̄2) = √ +
s2

1

n1

s2
2

n2

df =
( + )2s2

1

n1

s2
2

n2

+
( )2
s2
1

n1

n1−1

( )2
s2
2

n2

n2−1
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Welch in R
welch <- t.test(Score ~ Group, 
       var.equal = FALSE, #default, only here to highlight difference
       alternative = "less",
       data = threat)
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Welch in R
welch

## 
##     Welch Two Sample t-test
## 
## data:  Score by Group
## t = -7.4379, df = 20.878, p-value = 1.346e-07
## alternative hypothesis: true difference in means between group Threat and group Control is less than 0
## 95 percent confidence interval:
##       -Inf -3.313093
## sample estimates:
##  mean in group Threat mean in group Control 
##              5.272727              9.583333
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Cohen's D: Independent t
Independent-sample t-test:

 = mean group 1
 = mean group 2
 = pooled standard deviation

D =
x̄1 − x̄2

sp

x̄1

x̄2

sp
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Cohen's D in R
library(effsize)
cohen.d(threat$Score, threat$Group, conf.level = .99)

## 
## Cohen's d
## 
## d estimate: -3.081308 (large)
## 99 percent confidence interval:
##     lower     upper 
## -4.828153 -1.334463
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Summary
Today we have covered:

Basic structure of the independent-sample t-test
Calculations
Interpretation
Assumption checks
Effect size measures
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