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Learning objectives
1. Understand what are Type I and Type II errors in hypothesis testing.

2. Recognise the significance level as measuring the tolerable chance of committing a Type I error.

3. Recognise the e�ect of sample size on power.

4. Be able to check the assumptions underlying the t-test for a population mean.
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Part A

Errors and Power
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Where we're going to
Hypothesis testing lets us determine whether, for example, an observed di�erence between a sample mean and an
hypothesised value is real or just due to random sampling variation.

However, statistical significance sometimes may lead us to wrong conclusions!

It is possible to make two kinds of wrong decisions:

rejecting a true null hypothesis

not rejecting a false null hypothesis

This week we will discuss common pitfalls of hypothesis testing, as well as the factors that influence the probability of
committing these errors.
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Errors in hypothesis testing
Whether your decision is either to (a) reject the null hypothesis or (b) not reject the null hypothesis, you might be making an
error.

The reasoning of hypothesis tests is o�en compared to that of a court trial. The possibilities in such a trial are given below.

Possible outcomes of testing :H0 : Defendant = Not guilty
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Errors in hypothesis testing
In our system of justice, convicting an innocent person is considered worse than letting a guilty person go.

Possible outcomes of testing :H0 : Defendant = Not guilty
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Type I error

You could convict an innocent

i.e., you could reject "not guilty" when the person is
truly "not guilty"

i.e., you could reject the null hypothesis when it is true

Type II error

You could fail to convict a guilty defendant

i.e., you could fail to reject "not guilty" when the
defendant is guilty

i.e., you could fail to reject the null hypothesis when it is
false

Errors in hypothesis testing
Similarly, there are two types of errors in hypothesis testing.

Like convicting an innocent person, the error of rejecting a true null hypothesis is considered more serious, and so a null
hypothesis isn't rejected unless the evidence against it is convincing beyond reasonable doubt.
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Errors in hypothesis testing
Whether your decision is either to reject the null hypothesis or to not reject the null hypothesis, you might be making an error.

You make a Type I error when you reject a true null hypothesis

You make a Type II error when you don't reject a false null hypothesis

Possible outcomes of testing H0 : μ = μ0
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When is a Type II error worse?
Sometimes, we are more worried about committing a Type II error than a Type I error.

This is application-specific, but it happens less o�en.

You should think about your particular study to see if this is the case.

Example: developing a rapid test for diabetes:
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When is a Type II error worse?
Null hypothesis: Patient is not diabetic

Alternative hypothesis: Patient is diabetic

Type I error = False Positive:

a test that indicates a patient has diabetes when in reality they don't.

Type II error = False Negative:

A test that indicates the patient does not have diabetes when in fact they do have it. That is, a test that fails to detect an
actual diabetic.

More of a concern, as a person will miss out on treatment.
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Null hypothesis tests the claim that 
True value of 

Visually

μ = 0
μ = 1.5

n = 30
σ = 3
α = 0.05 12 / 52



Visually

In red: 
 = P(Rejecting  |  is true)α = 0.05 H0 H0
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Visually

In blue: 
 = P(Not rejecting  |  is false)β H0 H0
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Visually

In green: 
Power =  = P(Rejecting  |  is false)1 − β H0 H0
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Visually

E�ect of increasing the sample size. Remember: the sampling distributions will get narrower because 

In the previous slide , in this slide 

SE = σ

√n

n = 30 n = 60
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Visually
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Visually

E�ect of increasing the distance between the alternative and the null.
Power =  = P(Rejecting  |  if false)1 − β H0 H0
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Visually

19 / 52



Visually

E�ect of increasing the population standard deviation, . Here it was doubled.
Sampling distribution will have a larger spread because .

σ
SE = σ

√n
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Visually
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Visually

E�ect of decreasing the population standard deviation . Here it was halved.
Sampling distribution will have a lower spread because .

σ
SE = σ

√n
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Visually
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Visually

E�ect of increasing  from 0.05 (previous slide) to 0.1 (this slide).α
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In symbols
Probability of Type I error

The significance level  represents the tolerable probability of committing a Type I error

If you are worried about committing a Type I error, then your best strategy is to have a low significance level.

Probability of Type II error

The probability of committing a Type II error is denoted

If the null hypothesis is false, setting a low significance level increases the probability of making a Type II error.

α

α = P(Reject H0 ∣ H0 is true) = P(Type I error)

β = P(Do not reject H0 ∣ H0 is false) = P(Type II error)
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In symbols
Power

The power of a test is the probability that the test correctly rejects a false null hypothesis.

Recall, instead, that the probability of rejecting a true null hypothesis is the significance level:

Be careful to not confuse the two!

Power = P(Reject H0 ∣ H0 is false)

= 1 − P(Do not reject H0 ∣ H0 is false)

= 1 − β

α = P(Reject H0 ∣ H0 is true)
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Recap
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Factors a�ecting power
Power increases as the sample size increases, all else being held constant.

This is because the distributions of the sample statistics become "narrower", and there will be less statistics on the le� of the
critical value.

Power increases as the value of  increases, all else being held constant.

Power increases when the true value of the parameter is farther from the hypothesised value in the null.

I.e., power increases as the e�ect size increases (more on this later).

In practice you cannot change the distance of the true parameter value from the null, so you can increase power by either
taking a larger sample size, or making  larger (the latter however is not good practice).

α

α
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Significance level and errors
IDEALLY

While we wish to avoid both types of errors ...

IN REALITY

... in reality we have to accept some trade-o� between them.

If we make it very hard to reject , we could reduce the chance of making a Type I error, but then we would make Type II
errors more o�en.

On the other hand, making it easier to reject  would reduce the chance of making a Type II error, but increase the chance of
making a Type I error and we would end up rejecting too many 's that were actually true.

This balance is set by how easy or hard it is to reject , which is exactly determined by the significance level!

H0

H0

H0

H0
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Part B

E�ect size
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E�ect size
E�ect size is related to the magnitude of the the di�erence between the true population mean  and the hypothesised value 

We saw that a statistically significant result may not be important at all, i.e. may not have much real-world value.

Importance is related to the practical distance between the hypothesised value and the true population mean. I.e., it is
related to the e�ect size.

In practice we don't know the true value of the population mean , so to calculate e�ect size we typically replace  with
its estimate .

A di�erence between  and  can be statistically significant and yet be too small in actual units to be of much
importance

Remember in the body temperature example the sample mean was  °C, which was found to be significantly
di�erent from the hypothesised value of 37 °C. However, the di�erence is tiny and not important in practice.

μ

μ0

μ μ

x̄

x̄ μ0

x̄ = 36.81
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Formal e�ect size index: Cohen's D
Cohen's  was introduced as a measure of "e�ect size", to report whether the result may be of real-world value or not.

Consider a test for one population mean:

For a test of one population mean, Cohen'D is defined as:

that is, the di�erence between the sample and the hypothesised mean, measured in units of the standard deviation. (Careful: not
the standard error!)

D

H0 : μ = μ0

H1 : μ ≠ μ0

D =
x̄ − μ0

s
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E�ect size
Why not just the di�erence ?

It depends on the units of measurement of the data.

Scenario 1:

Scenario 2:

Clearly a di�erence of  in Scenario 1 is more substantial and of higher practical impact. However, a di�erence of 
in Scenario 2 is less substantial and of pretty much no practical impact.

Dividing the di�erence by the SD of the data (which is in the same unit of measurement as the data itself), gives you a
measure that does not depend on the unit of measurement.

x̄ − μ0

D = 5 − 3 = 2

D = 500000 − 499998 = 2

D = 2 D = 2
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E�ect size
Below are some rough guidelines on how to interpret the size of the e�ect.

These are not exact labels, but a loose guidance based on empirical research.

Verbal label Magnitude of 

Small

Medium  (e.g.,  between 0.20 and 0.79)

Large

D

d ≤ 0.20

d ≈ 0.50 D

d ≥ 0.80
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Part C

Example on power

37 / 52



Example on power
Suppose the population standard deviation is  and you will take a sample of size .

The 

The true population mean is .

The sampling distribution of the mean will be 

You want to perform a test to check whether the population mean is 0 or di�erent from 0.

The value 0 is the value  specified in the null hypothesis.

The sampling distribution of the mean will be 

We do not reject  if the observed mean falls in the middle 95% of the  distribution:

qnorm(c(0.025, 0.975), mean = 0, sd = 1.291)

## [1] -2.53  2.53

σ = 5 n = 15

SE = σ/√n = 5/√15 = 1.291

μ = 3

N(3, 1.291)

H0 : μ = 0 vs H1 : μ ≠ 0

μ0

N(0, 1.291)

H0 N(0, 1.291)
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Example on power
What's the power of the test?

I.e. what's the probability of rejecting  when  is indeed false?

If  is false, then the sample means follow a  distribution

So it's the probability (in that distribution) to the right of 2.53

1 - pnorm(2.53, mean = 3, sd = 1.291)

## [1] 0.6421

pnorm(2.53, mean = 3, sd = 1.291, lower.tail = FALSE)

## [1] 0.6421

Power = 0.64

H0 H0

H0 N(3, 1.291)
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Part D

The t-test assumptions
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The t-test assumptions
Check the technical conditions before reporting and interpreting any t-test results. If those are violated, the results may be
incorrect.

The results from a t-test for a population mean are valid when:

1. The obtained sample data are a random sample from population of interest

(This is called "independence" by some authors.)

2. Either the population follows a normal distribution or the sample size is su�iciently large (  as a guideline )

(This is called "normality" by some authors, but the goal is normality of the sampling distribution of the mean)

n ≥ 30
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Random sample
Consider whether the sample was randomly selected from the population of interest before generalizing the test conclusion
to that population.

Each unit should have been sampled independently of the others.

The sample should be representative of the population to avoid sampling bias.
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Normality
Normality

But of what?

The sampling distribution of the sample mean! This is what we ultimately want to follow a normal distribution.

All our formulas for confidence intervals and hypothesis testing started from the prerequisite that, when the population data
are known, the sampling distribution of the mean is normal:

From this prerequisite, we derived a similar distribution to the standard normal distribution, called the t-distribution. We
used the t-distribution when the population data are not known.

Key question

When is the sample mean normally distributed?

¯̄̄ ¯̄
X ∼ N(μ, )

σ

√n
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The t-test assumptions
Key question

When is the sample mean normally distributed?

Answer

When EITHER one of these holds:

The sample size is large enough (  as a guideline )

irrespectively of the distribution of the population data

The population data follow a normal distribution

irrespectively of the sample size

n ≥ 30
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Large enough sample size
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Population data normally distributed
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Checking for normality of the population data
Example data: a sample of 20 IQ scores:

head(iq_sample)

## # A tibble: 6 × 1
##      iq
##   <dbl>
## 1   113
## 2    97
## 3   113
## 4   113
## 5   104
## 6    85
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Histogram

ggplot(iq_sample, aes(x = iq)) + 
    geom_histogram(color = 'white')

Density plot

ggplot(iq_sample, aes(x = iq)) + 
    geom_density()

Checking for normality of the population data
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ggplot(iq_sample, aes(sample = iq)) + 
    geom_qq() +
    geom_qq_line() + 
    labs(x = "Theoretical quantiles", 
         y = "Sample quantiles")

Checking for normality of the population data
Quantile-Quantile plot (qq-plot): the points should roughly follow the line.
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Shapiro-Wilk normality test
Another hypothesis test, but this time:

the null hypothesis states that the population data follow a normal distribution
the alternative hypothesis states that the population data do not follow a normal distribution

shapiro.test(iq_sample$iq)

## 
##     Shapiro-Wilk normality test
## 
## data:  iq_sample$iq
## W = 0.95, p-value = 0.3

At the 5% significance level, we performed a Shapiro-Wilk test against the null hypothesis of normality of the population data: 
. The sample data do not provide su�icient evidence to reject the null hypothesis of normality in the

population.
W = 0.95, p = 0.3
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